
Bachelor thesis

Comparison of Loop-Free Route Update Algorithms in
Multi-Stream, Non-Time-Based Software Defined Networks

Luca Strick
232239

September 11, 2025

Begutachtung:
Prof. Dr. Dr. Klaus-Tycho Förster
Prof. Dr. Christian Janiesch

TU Dortmund University
Computer Science Faculty
Lehrstuhl IV - Praktische Informatik
https://ms.cs.tu-dortmund.de/

https://ms.cs.tu-dortmund.de/

Abstract

Withnetworks gettingmore complex and implementing softwaredefinednetworks,
SDN controllers need to change the route that flows take efficiently and without
causing packet loss. This thesis looks at multiple route-update algorithms. It com-
pares loop-free algorithms with flow swapping algorithms in non-time-based Soft-
ware Defined Networks. We create a test environment to evaluate these algorithms
on real hardware. In order to reduce the propagation time of route changes, we ap-
ply the routes directly using themanufacturer-provided API of our routers. We run
four tests on each route change: An ICMP-Echo test, an iperf-TCP test, an iperf-UDP
test, and a traceroute test. With this data, we can evaluate the differences between
the algorithms. Using flow swapping algorithms, we experience packet loss of up
to 3% during a route change in our environment. We additionally developed the
Three-Round algorithm to reduce the amount of packet loss, with a fast calculation
time and a fixed runtime of three rounds.

All tests are run with four flows at the same time to evaluate the effects of running
these algorithms in multi-stream environments.

We argue that there is a conflict between propagation-time and packet loss. No
algorithm we analysed is able to achieve good results in both metrics on non-time-
based SoftwareDefinedNetworks. Network administrators trade off their need for a
quick route change against their need to not have any packet loss. If it is necessary
to have absolutely no packet loss, we recommend using Greedy, as it guarantees
loop-freedom and can, under good circumstances, generate fast results. If the re-
quirements for packet loss are not as strict and speed is ofmost importance, we can
recommend using One-Round, as it is always quick.

i

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Main Results . 2
1.3. Structure . 2

2. Background 4
2.1. Software Defined Networks . 4
2.2. Time-Based Software Defined Networks 5
2.3. Route Updates . 5

2.3.1. 2-Phase-Commit protocols 6
2.3.2. Loop-Free Round-Based algorithms 6
2.3.3. Time-Based Updates . 7

2.4. Flow swapping . 7
2.5. Ansible . 7
2.6. MikroTik RouterOS . 7

3. Algorithms 9
3.1. Greedy . 9
3.2. Backward . 10
3.3. Brute-Force . 11
3.4. Chronicle . 12
3.5. One-Round . 12

4. ResearchQuestions 13

5. Three-Round 14

6. Experiment Setup 16
6.1. Network-Setup . 16
6.2. Hardware . 17
6.3. Software . 17

6.3.1. Ansible-Setup-Playbook . 18
6.3.2. Route-Change-Calculator . 20
6.3.3. Route-Applier . 21
6.3.4. Test-Controller . 22

6.4. Problems . 22
6.4.1. Routers Not Routing . 22
6.4.2. Packet loss during route updating 22
6.4.3. iPerf3 not measuring latency 23

6.5. Reproducibility, Configurability and Adaptability 23

ii

Contents

7. Experiment Results 24
7.1. Taking the short way . 25

7.1.1. Results from Algorithms . 25
7.1.2. Comparison of Algorithms 30
7.1.3. Performance Comparison 31
7.1.4. Comparison of Calculation Time 32
7.1.5. Discussion Of Route Change 1 33

7.2. Looping around . 33
7.2.1. Results from Algorithms . 34
7.2.2. Comparison of Algorithms 41
7.2.3. Performance Comparison 41
7.2.4. Comparison of Calculation Time 41
7.2.5. Discussion Of Route Change 2 42

7.3. Going backward . 43
7.3.1. Result from Algorithms . 44
7.3.2. Comparison of Algorithms 50
7.3.3. Performance Comparison 51
7.3.4. Comparison of Calculation Time 52
7.3.5. Discussion Of Route Change 3 52

8. Discussion 53

9. Conclusion 56
9.1. Results . 56
9.2. Future Work . 57

Bibliography 58

A. Appendix: Results 61

iii

1. Introduction

We will first explain the motivation for this thesis in chapter 1.1. After that, we will
introduce our main results in chapter 1.2 and the structure of this thesis in chapter
1.3.

1.1. Motivation

Complexnetworks containmanyflows going frommultiple sources tomultiple des-
tinations. More and more networks use Software Defined Networks to move the
routingdecisionpoint from the individual routers into a single control plane [Kre+15].
With the rise of Software Defined Networks, a new problem arises: route changes.
To change the path data takes through the network without packet loss, it is re-
quired that no intermittent loops emerge during route changes [MW13]. There are
several solutions proposed for this problem. Round-based loop-free updates are
well researched in literature [För+18] [MW13] [Alk24b] [Alk24a], with the downside
of taking long to apply changes. Time-based updates are relatively new and promis-
ing [MM16b], as they can be a lot faster than round-based ones.

According to Förster, Schmid, and Vissicchio [FSV19] there are many reasons why
there might be route changes: Security policy changes, traffic engineering, main-
tenance work, link failures, or service relocations. Most scenarios where route
changes are needed occur during usage, which stresses the importance of imple-
menting route changes without service impacts. Several route-update algorithms
that solve this problem exist in literature and need to be evaluated in a realistic
environment.

In a previous thesis, Alkhatib [Alk24b] compared the algorithms Greedy, Brute-
Force, Backward and their custom developed One-Round algorithm in networks
with traffic between one source and one destination. This thesis builds upon this
to investigate whether similar algorithms can be used for networks with multiple
sources and multiple destinations (multi-stream networks).

Additionally, Zheng et al. [Zhe+19] propose the Chronicle algorithm [Zhe+18], which
aims to provide a faster and congestion-free solution formulti-streamSDNs. Chron-
icle requires time-based SDNs and profits from their ability to do changes across
multiple routers simultaneously. We replicate this behaviour by sending a com-
mand to apply pending changes to all routers at the same time. We investigate
the difference in packet loss this causes compared to loop-free route-update algo-
rithms.

1

1. Introduction

There have been, to our knowledge, no studies comparing the packet loss of time-
based algorithms in non-time-based networks with multiple flows to traditional
round-based algorithms. We strive to close this gap by comparing these algorithms
on realworldhardware andanalysehow theyperformunder realistic circumstances.
This is critical for network administrators to evaluate which route update algo-
rithms best fit their needs. While some networks might have very strict require-
ments for packet loss, others might value update speed more.

As route updates need to be fast, even in large networks, the speed of the tools
proposed needs to be tested, evaluated and compared. Wemeasure the time it takes
to generate valid route change schedules, as well as the time it takes to apply the
changes onto routers.

1.2. Main Results

In this Thesis, we apply the algorithms Backward, Brute-force, Greedy, and One-
Round that were previously tested for single-flow networks to multi-stream net-
works. We show in our tests that these algorithms can be applied in multi-stream
networks with good results.

We also test the algorithms Chronicle and One-Round, that are better suited for
time-based Software Defined Networks, in our network. This thesis demonstrates
that this is possible and works, but leads to up to 15x more packet loss than loop-
free algorithms. The advantage of Chronicle and One-Round is that they need sig-
nificantly fewer rounds. This translates into time savings of up to 50% during the
change.

In order to reduce this packet loss, we develop our own algorithm: Three-Round.
We demonstrate that Three-Round produces up to 35% less packet loss than Chron-
icle and One-Round and can be executed up to 30% faster.

We argue that the choice of tool and computing platform can drastically change the
time it takes to facilitate the changes. While Alkhatib [Alk24b] experiences propa-
gation times for one flow of 19 to 123 seconds for their Ansible-based solution, we
get propagation times for four flows down to 0.4 to 3 seconds. The choice of a spe-
cific algorithm is also important, as is evident by our findings that while Backward
could generate loop-free schedules in under a millisecond, Greedy needed 0.17 s
and Brute-force up to 1.96 s.

To allow further research, we construct our test environment in an easily repro-
ducible way.

1.3. Structure

This thesis is structured into seven chapters.

2

1. Introduction

In chapter 2, we will introduce and define the terms used in this thesis. Chapter
3 will introduce the five algorithms already known from literature. Our research
questions and their background will be explained in chapter 4. We follow this up
by describing our own algorithm Three-Round in chapter 5. The setup and com-
ponents of our experiment will be introduced in chapter 6. Chapter 7 will present
results of our experiment. Chapter 8 will discuss the results. The thesis will be
concluded and topics for further work will be presented by chapter 9.

3

2. Background

This chapter introduces various terms, to be used later in this thesis. We will start
by defining SoftwareDefinedNetworks in chapter 2.1, following upwith the specific
definition of time-based Software Defined Networks in 2.2. Afterwards, we will ex-
plain Route Updates in chapter 2.3 and flow swapping in chapter 2.4. We will end
by introducing Ansible in chapter 2.5 and RouterOS in Chapter 2.6

2.1. Software Defined Networks

Software defined networks (SDN) differ from typical networks in separating the net-
work’s control software from the routers and switches in the network [Kre+15]. A
router, often called switch in the context of Software Defined Networks, only re-
ceives the forwarding table from the controller. This removes the decision-making
process from routers. These tables come with forwarding information that only
matches on packet header fields [FSV19].

Figure 2.1.: Drawing of a network with four nodes. Shown are two flows (red and
blue) both starting at a different source and ending at a different desti-
nation

4

2. Background

A flow is considered a session between a source to a destination that transfers data
at a fixed rate [MM16a]. Each flow has a defined sequence of routers it takes to get
from the source to the destination. This sequence can be changed by route updates.

For the purpose of this thesis, we define multi-stream SDNs to have multiple flows,
with each flow having a unique tuple of start and destination. An example of a
multi-stream SDN is shown in Figure 2.1. We define single-flow SDNs as networks
where only one flow exists concurrently.

2.2. Time-Based Software Defined Networks

Time-based/Timed-SDNs were introduced by Mizrahi and Moses [MM16a] to allow
for more efficient route updates. Contrary to other updates, the control software
does not directly apply route changes. Instead, it adds changes to buffers that are
sent to all routers. At a specified time sent with the buffer, all routers apply these
changes to their routing table. As the time is synchronized between all routers, this
allows network administrators to carry out a change on all routers exactly at the
same time, without regards to instabilities of the connection to the routers [Zhe+19].

2.3. Route Updates

Route updates change the forwarding rules in all routers to modify the route a flow
takes [För+18]. These operations can also change the routes of multiple flows si-
multaneously.

Figure 2.2.: Visualization of a route change in an example network. The straight
lines visualize the old route, the dotted lines the new route.

Figure 2.2 illustrates such a route change. While currently traffic flows from router
1 to 2 to 3 to 4 the route needs to be changed, so that traffic flows from 1 to 3 to

5

2. Background

2 to 4. While a naive method would be to send all route changes in one shot, this
might cause routing loops as router 3might update before router 2. The routing loop
would disappear after router 2 is updated. It is hard to predict the duration of packet
loss due to the lack of knowledge about the precise timing and delays between the
controller and the routers [MW13]. Multiple solutions proposed in literature try to
prevent packet loss during route updates. We present them in the following sub-
chapters.

2.3.1. 2-Phase-Commit protocols

Figure 2.3.: Visualization of a route change in an example network using the 2-
phase-commit protocol. The straight line visualizes the old route, the
dotted line the new route. The number on the lines is the tag allowed
over the link.

2-Phase-Commit protocols work by tagging all packets. When a route update is nec-
essary, it is configured in all routers as a new tag. Now this tag can be configured
at the beginning of the route. New traffic is then routed using the new rules. This
solution requires additional memory, larger header space, and can be problematic
when used together with middle boxes [För+18]. Figure 2.3 shows the steps neces-
sary to facilitate a route change using 2-Phase-Commit protocols.

2.3.2. Loop-Free Round-Based algorithms

Loop-free round-based algorithms split the route updates into rounds. Each round
starts after all routers have applied the previous round [För+18]. Thismakes it possi-
ble to create loop- andpacket loss freeupdate schedules by ensuring that all changes
in a round cannot cause loopswith other changes in that round. While this does not
have the problems 2-Phase-Commits have, it is a lot slower, as updating networks
can require up to Ω(𝑛) rounds, with 𝑛 being the amount of routers [LMS15]. Förster
et al. [För+18] show that finding a loop-free round-based schedule with a minimal
amount of rounds is NP-complete if it takes more than 2 rounds.

To create a round-based schedule for our example in figure 2.2, we need to ensure
that router 2 and 3 are not updated in the same round [FSV19].

6

2. Background

2.3.3. Time-Based Updates

Time-based updates use the features afforded by time-based Software Defined Net-
works. They allow, similar to 2-Phase-Commits, that all routers are updated at the
same time and therefore support flow swapping, as explained in chapter 2.4.

2.4. Flow swapping

Figure 2.4.: Visualization of a route change in an example network. Shown are the
before and after state of the network using flow swapping.

Flow swapping is describedbyMizrahi andMoses [MM16a] as updating twoormore
routers at the same time, as shown in figure 2.4. They argue that flow-swapping
is sometimes necessary to avoid congestion and introduce time-based updates to
allow for it.

2.5. Ansible

Ansible is anautomation tool that can configure servers, routers, andmuchmore [Inc].
Configuration is done by applying Playbooks on hosts by executing them using the
ansible-playbook tool. A Playbook is a yaml file defining the desired actions and state
of the configuration of computers or routers.

2.6. MikroTik RouterOS

Routers by MikroTik come with MikroTik RouterOS1 preinstalled. RouterOS han-
dles packet forwarding and firewall tasks. It can either be configured with the con-
figuration toolWinbox or through an API [Doc].
1https://help.mikrotik.com/docs/spaces/ROS/pages/328119/Getting+started

7

https://help.mikrotik.com/docs/spaces/ROS/pages/328119/Getting+started

2. Background

RouterOS scripts are sequences of RouterOS commands that can be stored and ex-
ecuted on the router.

8

3. Algorithms

This chapter will introduce the algorithms evaluated by this thesis. We will intro-
duce each Algorithm with their fundamental idea and problems. We start with the
Greedy algorithm in Chapter 3.1, followed by the Backward algorithm in Chapter
3.2, the Brute-force algorithm in Chapter 3.3, Chronicle in Chapter 3.4 and One-
Round in chapter 3.5.

The chapters will use Pseudocode to explain the algorithms. Wewill use the follow-
ing notation:

• old_route: List of the routers the flow takes before the route change
• new_route: List of the routers the flow takes after the route change
• route from 𝐴: A route from 𝐴 to the next router
• route to 𝐴: A route from any router to router 𝐴
• route from 𝐴 to 𝐵: 𝐴 route between router 𝐴 and router 𝐵
• 𝑟+: When 𝑟 is a route change, 𝑟+ only contains the added routes
• graph from: Creates a directed graph of a route. Each router is a node, and
each route is represented by a directed edge between two nodes.

3.1. Greedy

Greedy algorithms arewell-known in literature [DMR21] [Vin02] [Jun99]. Theywork
by greedily applying the best option for the current situation [DMR21]. In the case
of route updates, that is trying to apply all changes every round. Förster, Schmid,
and Vissicchio [FSV19] describe an algorithm to prevent loops in route updates. In
each round, all changes that pass two checks are scheduled: First we check that the
change does not cause loops, even under the assumption that all previously sched-
uled changes of the round do not contain removals. We check if the destination
would still be reachable, even if no other routes have been added, yet. Additionally,
we ensure that the destination is still reachable, even if no other previously sched-
uled routes in this round have been added. The second check is not described by
Förster, Schmid, and Vissicchio [FSV19] in algorithm 1, but important to ensure low
packet loss. When all changes are made, the algorithm exits.
1: procedure GREEDY(old_route, new_route)
2: required← changes between old route and new route
3: 𝑔← graph from old_route
4: 𝑛 ← 0
5: while |required| > 0 do
6: 𝑛 ← 𝑛 + 1

9

3. Algorithms

7: 𝑏 ← copy of 𝑔 ⊲ Contains state before the round
8: 𝑎 ← copy of 𝑔 ⊲ Contains only positive changes
9: for each 𝑟 ∈ required do
10: if 𝑟+ does not cause a loop in 𝑎 and 𝑟 does not cause connectivity loss

in 𝑏 then
11: Apply 𝑟 in round 𝑛
12: Apply 𝑟 in 𝑔

13: Apply 𝑟+ in 𝑎

14: Remove 𝑟 from required
15: end if
16: end for
17: end while
18: end procedure

Using a greedy algorithm for calculating route updates can be very inefficient in
some cases. Förster et al. [För+18] show that a single wrong choice by the algorithm
can increase the amount of rounds from 𝑂 (1) to Ω(𝑛), with 𝑛 being the amount of
routers.

3.2. Backward

The Backward algorithm applies all new routes starting with the last router of the
new route path and ending with the first one. It changes the forwarding table of
one router per round [Mat+16].
1: procedure BACKWARD(old_route, new_route)
2: 𝑛 ← 0
3: for 𝑖 ← |new_route| − 2 to 0 do
4: if new_route[𝑖] is in old_route then
5: if route from new_route[𝑖] to new_route[𝑖 + 1] is in old_route then
6: continue
7: end if
8: Remove route from new_route[𝑖] in round 𝑛
9: end if
10: 𝑛 ← 𝑛 + 1 ⊲ Only increase if there are changes
11: Add route from new_route[𝑖] to new_route[𝑖 + 1] in round 𝑛
12: end for
13: end procedure

By going from the back to the front of the new route one router per round, there
can never be loops [Ami+16] [MW13]. We modified this algorithm slightly. We skip
rounds that would cause no changes. This way the algorithm can use less than 𝑛

rounds, if some routes are already correctly set.

The algorithm will always produce a solution with (𝑛 − routes that are already set)
rounds, even if a simpler schedule with fewer rounds exists.

10

3. Algorithms

3.3. Brute-Force

TheBrute-Force algorithmworksby checking everypossible combinationof changes.
It schedules the combinationwith the least number of rounds, that pass the require-
ments outlined in chapter 3.1 [Alk24b].
1: procedure BRUTEFORCE(old_route, new_route)
2: required← changes between old route and new route
3: 𝑔← graph from old_route
4: Use rounds from BRUTEFORCEROUND(required, 𝑔)
5: end procedure
6:
7: procedure BRUTEFORCEROUND(required, network)
8: if |required| = 0 then
9: return []
10: end if
11: 𝑏 ← None
12: for 𝑖 ← |required| to 0 do
13: for each 𝑐 ∈ Combinations of required with 𝑖 elements per combination

do
14: 𝑣 ← 1 ⊲ Stores if route change is still valid
15: 𝑟 ← copy of required
16: current_network← copy of network
17: positive_network← copy of network
18: changes← {}
19: for each 𝑜 ∈ 𝑐 do
20: if 𝑜+ causes loop in positive_network or 𝑜 causes connectivity loss

in network then
21: 𝑣 ← 0
22: end if
23: Apply 𝑜 in current_network and add it to changes
24: Apply 𝑜+ to positive_network
25: Remove 𝑜 from 𝑟

26: end for
27: if 𝑣 = 0 then
28: continue
29: end if
30: solution← BruteforceRound(𝑟 , current_network)
31: if solution has less rounds than best or 𝑏 is None then
32: 𝑏 ← changes ∪ solution
33: end if
34: end for
35: end for
36: end procedure

As this is NP-complete [För+18], we use a backtracking-based approach to find the

11

3. Algorithms

solution, as such algorithms are suited well for NP-completed problems [DMR21].

3.4. Chronicle

Zheng et al. [Zhe+18] introduced Chronicle as an algorithm for scheduling multi-
stream route updates in time-based SDNs. When trying to find a suitable schedule,
it takes the congestion of paths into account.

Chronicle expects a network graphwithout loops [Zhe+18]. This is in contrast to the
other algorithms, which specialize in calculating updates without causing loops,
even if the network topology would allow for them.

We implemented an algorithm inspired by Chronicle that does not expect timing
information and outputs a round-based schedule. Our implementation therefore
roughly follows the pseudocode by Zheng et al. [Zhe+19].

3.5. One-Round

Similar to the One-Round algorithm by Alkhatib [Alk24b], we implemented an al-
gorithm that schedules all changes in the first round. This is a flow swap on all
routers, as described in chapter 2.4.

Thealgorithmgenerates the samesolution as ourChronicle variant for route changes
that are not influenced by congestion.
1: procedure ONEROUND(old_route, new_route)
2: for 0 to 𝑖 ← |old_route| − 2 do
3: Remove route from old_route[𝑖] to old_route[𝑖 + 1] in round 1
4: end for
5: for 0 to 𝑖 ← |new_route| − 2 do
6: Add route from new_route[𝑖] to new_route[𝑖 + 1] in round 1
7: end for
8: end procedure

In time-based SDNswithout congestion, this algorithmwould therefore produce an
optimal solution, as it is ensured that all routers apply the new routes simultane-
ously.

12

4. ResearchQuestions

We formulated two main research questions for this thesis:

How can algorithms for loop-free route updates in Software Defined Networks
be applied in multi-stream networks?
There is a lot of literature that analyzes route updates and their effects for single-
flow SDNs [Alk24b] [Alk24a] [För+18] [Zhe+17] [LMS15], with only some papers con-
sidering multiple flows [MW13] [Zhe+19] [XLH]. While the update strategies in the
literaturemainly focus on single-flow networks, we can use the same update strate-
gies in multi-stream networks if the forwarding rules are per-destination [MW13].
We want to explore this, to evaluate if it is a suitable approach in realistic environ-
ments.

How much packet loss does adapting time-based algorithms cause for non-time-
based Software Defined Networks?
As only some networks support time-based updates, we want to find suitable al-
ternative options to use algorithms designed for time-based Software Defined Net-
works. To achieve this, we want to send a command to apply pending changes to
all routers at the same time to imitate how time-based updates work. As this will
come with more packet loss than loop-free route updates, we need to measure the
packet loss produced and compare it with loop-free route updates.

In addition to these research questions, we developed an algorithm that sits on a
middle ground between flow swapping and round-based algorithms. We developed
Three-Round and introduce it in chapter 5.

13

5. Three-Round

While One-Round should work well in time-based SDNs, it will cause packet loss in
our network, as we cannot guarantee that all changes are applied simultaneously.
We developed Three-Round to reduce this packet loss.

Figure 5.1.: A network with three nodes symbolizing routers, which has ideal con-
ditions to use Three-Round

Consider the route change in figure 5.1, where we want to update the path the flow
from router 1 to router 2 takes. While currently edge A is used, we want a new flow
to take edge B and C. Updating router 1 and router 3 in the same round could lead
to race conditions, where edge A is removed and B is set, but C is not set yet. A
race condition like this can happen, as we do not know in which order changes in a
round are executed. This would cause packet loss, as router 3 does not knowwhere
to route the traffic.
This can be prevented by updating router 3 in round one, as it does not have any
effects on the flow. We can then update 1 in the next round. This strategy is always
possible, when there are nodes that are not currently part of the flow. We incorpo-
rated this fact into our customalgorithm,which therefore alwaysuses three rounds:

1. Determine routers that currently do not route traffic. Apply the changes for
these routers.

2. Apply changes for all other routers.
3. Clean-up routes still left from the old route.

The third round removes any unused routes that get no traffic after round two.
1: procedure THREEROUND(old_route, new_route)
2: for 0 to 𝑖 ← |new_route| − 2 do
3: if new_route[𝑖] is in old_route then
4: if route from new_route[𝑖] is in old_route then
5: continue
6: end if
7: Remove route from new_route[𝑖] in round 2
8: Add route from new_route[𝑖] to new_route[𝑖 + 1] in round 2

14

5. Three-Round

9: else
10: Add route from new_route[𝑖] to new_route[𝑖 + 1] in round 1
11: end if
12: end for
13: for 0 to 𝑖 ← |old_route| − 2 do
14: if route from old_route[𝑖] is not in new_route then
15: Remove route from old_route[𝑖] to old_route[𝑖 + 1] in round 3
16: end if
17: end for
18: end procedure

While this algorithm is not motivated by any existing literature, the basic concept
can be compared to that of relaxed loop-freedom, where routers that do not cur-
rently getnew trafficareupdatedwithout verifying that it doesnot cause loops [LMS15].
The key difference is that while algorithms conforming to relaxed loop-freedom
generate loop-free schedules for traffic newly entering, that is not guaranteed for
Three-Round, as all nodes currently getting traffic are updated in round two. Three-
Round is also simpler by updating all routers that do not get any traffic in the first
round. These differences allow Three-Round to always produce schedules with two
rounds plus clean-up.

15

6. Experiment Setup

To evaluate the algorithms, we construct a network of two five-port computers and
eight MikroTik hEX routers running RouterOS. An additional computer is used as a
controller. We chose a static network topology without changes between test runs
to provide consistency between tests and to avoid cabling mistakes.

In chapter 6.1, we will describe the setup of our test network. Chapter 6.2 will intro-
duce the hardware used to facilitate the tests. The software components we wrote
in order to calculate and execute route changes, run the tests, and export graphs
will be introduced in chapter 6.3. During the setup and testing of our setup, we ran
into some problems, which will be explained in chapter 6.4. In order to allow for
further research, we created our software components to more easily reproduce
our results. We will explain the steps necessary in chapter 6.5.

6.1. Network-Setup

The routers and computers are connected as shown in figure 6.1. The three com-
puters act as a source, destination, and controller for our tests and will therefore
be referred to as such.

Wehave assigned four source addresses (fd8a::1 to fd8a::4) to the loopback interface
of our source and four destination addresses (fd8b::1 to fd8b::4) to the loopback
interface of our destination. We designate each address to a link to a router. This
way we can control exactly which links traffic takes from and to the computers.

The source and destination computers are connected via a direct cable that is al-
ways used as a (back-)route back to the source. This allows us to attribute changes
to the forward-route, without having to worry about changes to the back-route.

To ensure precise timemeasurements in UDP latency tests, we have configured the
source and destination computers to sync their times using PTP. This allows us to
get accuracies as low as tens of microseconds [Che22].

Additionally, we connected all computers and routers to a switch to create anout-of-
band management network. Out-of-band management uses a separate dedicated
network to allow the controller to talk to the routers [Jal+17]. This network is never
used to carry test-traffic. This is ensured by using the legacy protocol IPv4 in that
network, while we use IPv6 in our test network. The network is used to allow the
controller to talk to the source, destination, and all routers.

16

6. Experiment Setup

Figure 6.1.: Visualization of the network of the test setup. On the bottom and on the
top is the source and destination computer. Circles are routers. Lines
are links between the routers. The out-of-band management network
that is connected to all routers and computers is not shown.

6.2. Hardware

Controller, source, anddestination areDELLD17S computerswithDebian 12. These
computers are powerful enough to handle all tasks in this thesiswithmoderate CPU
usage. Our setup is shown in figure 6.2.

All routers are MikroTik hEX routers with RouterOS 7.18.2. The routers are not
powerful enough to route gigabit streams, even with fasttrack6 enabled and do not
support Jumbo frames. We therefore decided to limit our testing bandwidth to 50
Mbit/s per flow in order to have a static throughput that is not influenced by the
routers’ performance.

6.3. Software

In order to allow for reproduction and to provide consistent results, we created a
systemcontaining the following elements: Ansible-Setup-Playbook, Route-Change-
Calculator, Route-Applier, and Test-Controller.

17

6. Experiment Setup

Figure 6.2.: Image of three computers, one switch and 8 routers.

These components roughly follow theUnix philosophy “Do one thing and do it well,
write programs that work together” [Sal94] by working as independent software
components. The interactions between the components are depicted in figure 6.3.
This enables us to look at each component individually and allows further work to
re-use some components. In this section, we will explain what each component
does and how they work together.

6.3.1. Ansible-Setup-Playbook

Wedecided to use Ansible for the basic setup of the test computer and routers. This
is done to let others reproduce our findings by being able to apply our configuration
on their hardware.

In order to have a consistent setup on all routers, we apply the “router-setup” play-
book1 to all routers. This playbook ensures that there are no unnecessary default
configurations on the routers. Afterwards, it configures upstream over IPv4 to the
internet over the management network, to allow for updates and remote manage-
ment of the router. It then applies firewall rules. Contrary to the router’s default
configuration, we do not configure a rule to drop invalid traffic for IPv6, as this rule

1https://gitlab.fachschaften.org/ba-loop-free-routing-non-time-based/ansible/-/blob/main/
router_setup.yml

18

https://gitlab.fachschaften.org/ba-loop-free-routing-non-time-based/ansible/-/blob/main/router_setup.yml
https://gitlab.fachschaften.org/ba-loop-free-routing-non-time-based/ansible/-/blob/main/router_setup.yml

6. Experiment Setup

Figure 6.3.: Drawing of the architecture of the test setup

caused unexplainable packet loss during testing. Lastly, we configure our test net-
work: We set static IPv6 addresses on every link between two routers. We also set
a few routes:

• Routes back toour sources, to allow for ICMPpackets to reach them, e.g. when
the TTL expires mid-path. This is especially useful for our “traceroute” test.

• Routes from router 5-8 to the destination address assigned to the loopback
interface of the destination computer, if it is designated for that link.

The ansible playbook “debian”2 configures the testing computers. It installs various
software we need for tests, configures an SSH daemon using the ansible-role “fsi-
ansible.sshd”3 and copies the network config from our repository. It configures
PTP for time synchronization between the source and the destination computer.
The playbook also configures the destination computer to automatically start an
iperf2 server for TCP tests and installs all software components on the controller
computer.

2https://gitlab.fachschaften.org/ba-loop-free-routing-non-time-based/ansible/-/blob/main/
debian.yml

3https://gitlab.fachschaften.org/fsi-ansible/sshd

19

https://gitlab.fachschaften.org/ba-loop-free-routing-non-time-based/ansible/-/blob/main/debian.yml
https://gitlab.fachschaften.org/ba-loop-free-routing-non-time-based/ansible/-/blob/main/debian.yml
https://gitlab.fachschaften.org/fsi-ansible/sshd

6. Experiment Setup

A third central playbook is “clear_router.yml”4, which resets the routes of all routers
to their default state outlined above and removes pending scripts, if there are any.
This playbook is used by our Test-Controller component to clean up between test
runs.

6.3.2. Route-Change-Calculator

The Route-Change-Calculator5 is an interactive Python3 application, which takes
new routes as input and calculates a “route_change.json” containing the necessary
steps to change to these routes from our default routes for a given algorithm.

All algorithms outlined in chapter 3 are implemented in Route-Change-Calculator
and can therefore be tested. For this to work, Route-Change-Calculator asks for the
new routes, the algorithm of choice, and the waiting time between rounds when
executed. The waiting time between rounds is only written to the result file for
later use by Route-Applier. The algorithm of choice is passed the new and default
routes and calculates a route-change-rounds file. This file contains the information
about addedand removed routes for each round. At thebeginningof thefile, default
routes for all flows are added to always start tests with a fixed baseline. The below
listing shows an example of such a route-change file.

Listing 6.1: route-change.json example
{
" rounds " : [
{
" removeRoutes " : [
{
" from " : " r1 " ,
" to " : " r2 " ,
" flow " : " 1 "

}
] ,
" addRoutes " : [
{
" from " : " r2 " ,
" to " : " r7 " ,
" flow " : " 1 "

}
] ,
" propagationTime " : 5000

}
]

4https://gitlab.fachschaften.org/ba-loop-free-routing-non-time-based/ansible/-/blob/main/
clear_router.yml

5https://gitlab.fachschaften.org/ba-loop-free-routing-non-time-based/route-change-calculator

20

https://gitlab.fachschaften.org/ba-loop-free-routing-non-time-based/ansible/-/blob/main/clear_router.yml
https://gitlab.fachschaften.org/ba-loop-free-routing-non-time-based/ansible/-/blob/main/clear_router.yml
https://gitlab.fachschaften.org/ba-loop-free-routing-non-time-based/route-change-calculator

6. Experiment Setup

}

6.3.3. Route-Applier

After theRoute-Change-Calculatorhas calculated a route-changefile, it canbepassed,
in combinationwith a routers.json to theRoute-Applier component. The routers.json
is used as a configuration file holding the API access data and metadata about the
connection between routers. It is generated by the Ansible-Setup-Playbook and
stored on the controller.

The Route-Applier component consists of a small Go program that connects to the
MikroTik API using community maintained bindings6 and executes the RouterOS
commands necessary for route changes. When wanting to apply route changes,
minimizing the time it takes to apply the changes is often a goal [FSV19]. Go is
chosen as it can be compiled into native binaries and has good support for asyn-
chronous operations.

The option propagationTime in the route-change file can be used to wait between
applying rounds. We use it in chapter 7 in order to see which change caused which
effects by looking at the time the changes happened at.

The application of the routes uses four steps per round:

1. RouterOS script files containing thenecessary commands for the route change
are generated. All routes are added with a distance of 1 and later degraded to
a distance of 10, to have a higher priority than routes that are getting deleted.
A resulting script file could look like this:
/ ipv6 / route / add dst −address=fd8b : : 4 / 1 2 8 gateway=fd80 : 0 : 0 : 1 : : 1 d is tance =1
/ ipv6 / route / se t number=[f ind dis tance =10 dst −address=fd8b : : 2 / 1 2 8 gateway=fd80 : 0 : 0 : 5 : : 3] gateway=fd80 : 0 : 0 : 6 : : 6
/ ipv6 / route / se t number=[f ind dis tance =10 dst −address=fd8b : : 4 / 1 2 8 gateway=fd80 : 0 : 0 : 1 : : 1] gateway=fd80 : 0 : 0 : 5 : : 3
/ ipv6 / route / se t d is tance =10 numbers=[f ind dst −address=fd8b : : 4 / 1 2 8 gateway=fd80 : 0 : 0 : 1 : : 1 d is tance =1]

2. The RouterOS scripts are transferred to the routers.
3. The RouterOS script files are executed on the routers.
4. The RouterOS script files are deleted from the routers.

All steps are executed simultaneously on all routers using Go subroutines. This is
required for good results for our Chronicle, One-Round and Three-Round imple-
mentations.

Wefirst send a script filewith the required commands to the router. After all routers
have received the script file, we apply them on all routers simultaneously. We do
this in order to better mimic time-based SDNs, by first writing all route changes in
a file and later applying them. As MikroTik has no built-in option to write changes
to a buffer and later apply them, we decided to use script files.

6https://github.com/go-routeros/routeros

21

https://github.com/go-routeros/routeros

6. Experiment Setup

6.3.4. Test-Controller

The test controller is split into two parts: create_plots and test execution script files.
The script files are used to start Route-Change-Calculator, Route-Applier and the
testing tools iperf2, mtr and ping. We run the testing tools in sequence to avoid
them influencing each other. create_plots is a small Python application that parses
the output files of our tests and creates plots using the Python library plotly. On
every run, all files are parsed. Afterwards, this data is used to generate multiple
different graphs.

6.4. Problems

While performing our evaluation, we foundmultiple problems that we had to work
around.

6.4.1. Routers Not Routing

In around one of 100 tests, the routers suddenly stopped routing. As far as we can
tell, sometimes RouterOS does not accept valid routes. There is no indication that
the route is not installed correctly. Disabling fast-track does not help. Disabling
the non-working routes and enabling them without changes again seems to fix the
problem temporarily.

We have reported this issue to the manufacturer. We can reproduce this bug with
RouterOS 7.18.2, 7.19.1 and 7.20.0-beta2. We removed all measurements affected by
this issue before plotting, as we are convinced that this is a RouterOS bug.

6.4.2. Packet loss during route updating

When updating the routes of a RouterOS router, there is slight packet loss. This
issue can be reproduced by creating a script that changes routes back and forth
and executing it while measuring for packet loss.

In our tests, this packet loss seems to be smaller when changing the destination
of existing static routes, instead of creating new static routes and deleting the old
ones. We therefore change routes whenever possible. We have reported this issue
to themanufacturer as well. MikroTik told us, that this packet loss is to be expected
during the change of a route in RouterOS.

22

6. Experiment Setup

6.4.3. iPerf3 not measuring latency

Similarly toAlkhatib [Alk24b], we couldnot use iPerf3 for ourmeasurements. While
iPerf2 allows us to measure round-trip time for TCP connections and latency for
UDP connections, these measurements are not available in iPerf3. We therefore
used the older iPerf2 for both our TCP and UDP tests.

6.5. Reproducibility, Configurability and Adaptability

The setup used in this thesis is built in a way that enables further research by being
able to modify components on their own.

In order to reproduce the results of this thesis on the same hardware, it is necessary
to recreate the network setup and management network. Afterwards, the Ansible-
Setup-Playbookneeds to be cloned and changed tofit the setup. After connecting all
routers, disabling the RouterOS firewall and setting upDebian 12 on the computers,
the Ansible playbooks can be executed. The playbooks should set up basic router
settings and install all necessary tools on the computers.

On the controller computer, SSH to source and destination and accept the SSH host
keys. One can now create an empty directory on the controller and run test_all.

23

7. Experiment Results

We created multiple test cases and tested them with all algorithms to allow com-
parison between the algorithms. We start all tests with default routes for all flows.
Each number represents the identifier of a router. Each line is a flow (flows one to
four).

1. 1, 2, 3, 4, 5, 6, 7, 8
2. 2, 3, 4, 5, 6, 7
3. 3, 2, 1, 8, 7, 6
4. 4, 3, 2, 1, 8, 7, 6, 5

Figure 7.1 demonstrates the default routes graphically.

Figure 7.1.: Shown are four flows differentiated by color

We ran all test cases 100 timeswith a delay of 5 seconds between rounds. This allows
us to differentiate between the rounds in the results. The first round begins after 5
seconds. All tests ran for 45 seconds, which gives us time for a maximum of seven
rounds.

In order to compare the speed of our solution to the results of Alkhatib [Alk24b]
and their Ansible-based solution, we ran route changes again with nowaiting times
between rounds and measured the time it took to apply the changes. We also ran
the route change calculation for every route change 1000 times to compare the time
it took to generate the route change.

24

7. Experiment Results

7.1. Taking the short way

To get a feel for how the algorithms behave when shortening routes, we perform
a route change to a route with one hop. This allows us to get a baseline for simple
changes with a small amount of rounds and establish near-minimum round-trip-
times.

Our selected routes are shown below. Each row represents a flow and each number
a route. Figure 7.2 visualizes the changes.

1. 1, 2, 3, 4, 5, 6, 7, 8 to 1, 7, 8
2. 2, 3, 4, 5, 6, 7 to 2, 6, 7
3. 3, 2, 1, 8, 7, 6 to 3, 5, 6
4. 4, 3, 2, 1, 8, 7, 6, 5 to 4, 3, 5

Figure 7.2.: Graphic of the first route change

We will present the results of this route change in chapter 7.1.1, followed by com-
parisons in chapter 7.1.2, 7.1.3 and 7.1.4. We will end the chapter by discussing the
results in chapter 7.1.5.

7.1.1. Results from Algorithms

Backward

The Backward algorithm calculates the route change in two rounds. In round one,
all flows are updated. Round two is only required for flow three.

This is further shown by the route update diagram in figure 7.3, when leaving 5
seconds between rounds.

The latency between source and destination is severely affected by the shortening
of the routes. This can be seen in figure 7.4 where we can see a steep fall in the fifth

25

7. Experiment Results

0 10 20 30 40

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure 7.3.: Links disappearing and newly appearing in traceroutes when running
the Backward algorithm

second for all flows. The latency of flow three falls again, as expected, at ten sec-
onds (in round two). The round trip time infigure 7.5 behaves similarly, but is signif-
icantly smaller than the latency. This is implausible and indicative of either slower
routing during the latency tests or an issue with the PTP time-synchronization dur-
ing the measurements.

0 10 20 30 40

3.3

3.4

3.5

3.6

3.7

3.8

3.9
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure 7.4.: Latency between source
and destination of all
flows during a route
change with the Back-
ward algorithm

0 10 20 30 40

900

1000

1100

1200

1300

1400

1500

1600

1700
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure 7.5.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the Backward algorithm

As the Backward algorithm is a round-based loop-free algorithm, we should expe-
rience no packet loss. When we look at the results of our ping-test in figure 7.6,
we can see little packet loss at the five-second mark. This loss can be explained by
route changes sometimes dropping packets in RouterOS, as we have explained in
Chapter 6.4.2. This is also illustrated by the retries of the TCP stream in 7.8.

26

7. Experiment Results

As we only test with 50 mbit/s per flow and there is enough network capacity to
catch up, we cannot see any drop in bandwidth.

When executing the next round directly after the previous round finished, the time
to apply the changes was between 318 ms and 1048 ms, with a median of 380 ms.
As displayed in figure 7.7 most time is consumed by initializing the connection to
the routers. Round 1 normally takes longer than round two. There were some cases
where round two took longer.

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure 7.6.: Lost packets in our ping
test when executing a
route change with the
Backward algorithm

Complete-Time Init-Time Round-1 Round-2
0

200

400

600

800

1000

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure 7.7.: Time that it takes to ap-
ply the changes, whennot
sleeping between rounds

Compared towaiting five seconds between rounds, the effects aremore condensed.
As can be seen in figure 7.9, there is no influence on the bandwidth.

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5

6
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure 7.8.: Bandwidth and retries
during the execution of
the Backward algorithm

0 5 10
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure 7.9.: Bandwidth and retries
during the execution of
the Backward algorithm,
when not sleeping be-
tween rounds

27

7. Experiment Results

Greedy

For this route change, the solution of the Greedy algorithm does not differ from the
solution of the Backward algorithm.

This causes the results to not differ much from the results of the Backward algo-
rithm. All results can be found in appendix A.

Brute-Force

The solution of Brute-Force is the same as the solution of the Backward algorithm
for this route-change, as well.

The results do therefore not differ significantly from the results of the Backward
and Greedy algorithms. All results can be found in appendix A.

Chronicle

The Chronicle algorithm applies all route changes in the first round, as there is no
congestion.

Applying all changes at once, as is shown in figure 7.10, has a direct influence on the
latency in thefifth second. However, it results in a significant higher loss in our ping
and bandwidth tests, as is shown in figure 7.11 and figure 7.12. This is expected, as
we do not have a Timed-SDN network, but can only try to apply all changes roughly
simultaneously.

0 10 20 30 40

4.7

4.8

4.9

5

5.1

5.2

5.3 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure 7.10.: Latency between source
and destination of all
flows during a route
change with the Chroni-
cle algorithm

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure 7.11.: Lost packets in our ping
test when executing a
route change with the
Chronicle algorithm

Figure 7.13 shows the time it took to apply all changes, which is between 340ms and
859 ms with a median of 408ms.

28

7. Experiment Results

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure 7.12.: Bandwidth and retries
during the execution of
the Chronicle algorithm

Complete-Time Init-Time Round-1

200

300

400

500

600

700

800

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure 7.13.: Time that it takes to ap-
ply the changes using
the Chronicle algorithm

One-Round

The Chronicle schedule and the One-Round schedule are identical.

All results can be found in appendix A.

Three-Round

Our Three-Round algorithm adds a route from router 5 to 6 in the first round. The
second round adds all other necessary rounds. Round three removes old, unused
routes.

The latency plot in figure 7.14 illustrates that all visible changes are happening in
round two.

There is slight packet loss, when round two is applied, as shown in figure 7.15. This
packet loss is comparable to the packet loss when using loop-free updates.

29

7. Experiment Results

0 10 20 30 40
6.3

6.4

6.5

6.6

6.7

6.8

6.9

7

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure 7.14.: Latency between source
and destination of all
flows during a route
change with the Three-
Round algorithm

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure 7.15.: Lost packets in our ping
test when executing a
route change with the
Three-Round algorithm

Without extra time between rounds, the time it takes to apply all rounds is between
470 ms and 1253 ms. Round three, which only cleans up unused routes, is between
107 ms and 706 ms. Detailed information about the apply-time can be found in fig-
ure 7.16.

Thepacket loss doesnot differmuchwhen runningwithout timebetween the rounds,
as can be seen in figure 7.17.

Complete-Time Init-Time Round-1 Round-2 Round-3
0

200

400

600

800

1000

1200

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure 7.16.: Time that it takes to ap-
ply the changes using
the Three-Round algo-
rithm, if we leave no
time between rounds

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure 7.17.: Lost packets in our ping
test when executing a
route change with the
Three-Round algorithm
and no extra time be-
tween rounds

7.1.2. Comparison of Algorithms

Greedy, Backward, and Brute-force all create good results with an equal number of
two rounds.

30

7. Experiment Results

Chronicle andOne-Roundonly need one round, but experience significantly higher
packet loss. While Backward, Brute-force, Greedy and Three-Round have, at most,
one lost packet in our ICMP-Echo tests, Chronicle andOne-Round have up to seven.
Retries and Lost ICMP-Echos are around ten times higher for these algorithms for
some flows. This translates to around 1 ms of non-connection for flow three and
four. Flow one and two are not affected by this.

Our test flows in figure 7.18 demonstrates that Chronicle and One-Round generate
more packet loss than the other algorithms for this test-case.

Backward Brute-force Chronicle Greedy One-Round Three-Round

0

1

2

3

4

5

6

7

Algorithm

Lo
st

 p
in

g
pa

ck
et

s

Figure 7.18.: Comparison of lost packets for the different algorithms

Three-Round needs the most rounds for this change. If we do not count the clean-
up round, Three-Round still uses as many rounds as Greedy, Backward and Brute-
force.

7.1.3. Performance Comparison

Figure 7.19 compares the duration it takes to apply the changes of the algorithms
proposed. Interestingly, Brute-force, Greedy, and Backward are typically 22 ms
faster than Chronicle and One-Round, even though they have one round more.
Three-Round is typically 219ms slower than Chronicle and One-Round, as it always
needs three rounds and takes time cleaning up.

31

7. Experiment Results

Backward Brute-force Chronicle Greedy One-Round Three-Round

400

600

800

1000

1200

1400

Algorithm

A
pp

ly
 ti

m
e

(m
s)

Figure 7.19.: Comparison of the time it took to apply the routes for the different al-
gorithms

7.1.4. Comparison of Calculation Time

In Chapter 7.1.3 we look at the time it takes to apply the changes and omit the time
it takes to generate valid changes. As can be seen in figure 7.20, this time varies be-
tween the algorithmswith Brute-force and Greedy both using between 0.16 seconds
and 0.18 seconds. One-Round, Backward, Chronicle and Three-Round use less than
one millisecond to generate this route change.

Backward Brute-force Chronicle Greedy One-Round Three-Round

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Algorithm

C
al

cu
la

tio
n

tim
e

(s
)

Figure 7.20.: Comparison of the time it took to calculate the routes for the different
algorithms

32

7. Experiment Results

7.1.5. Discussion Of Route Change 1

The best algorithms for this route change are Backward, Brute-force and Greedy.
While they have one more round than Chronicle and One-Round, they have up to
ten times less packet loss and apply 20 ms faster in our tests.

Three-Round has comparable packet loss to Backward, Brute-force, and Greedy,
but takes 219 ms longer to apply. As Backward has the shortest calculation time
with less than one millisecond, we recommend Backward for this route change.

7.2. Looping around

As we compare multiple loop-free route-update algorithms, we want to especially
test their ability for creating loop-free route-updates. To evaluate the ability of the
algorithm to cope with loops, we test the following route changes that are prone
to producing a lot of loops. Each row represents a flow and each number a route.
Figure 7.21 visualizes the changes.

1. 1, 2, 3, 4, 5, 6, 7, 8 to 1, 7, 6, 2, 3, 5, 4, 8
2. 2, 3, 4, 5, 6, 7 to 2, 6, 5, 3, 4, 8, 1, 7
3. 3, 2, 1, 8, 7, 6 to 3, 5, 4, 8, 1, 7, 6
4. 4, 3, 2, 1, 8, 7, 6, 5 to 4, 8, 7, 1, 2, 3, 5

Figure 7.21.: Graphic of the second route change

We will present the results of this route change in chapter 7.2.1, followed by com-
parisons in chapter 7.2.2, 7.2.3 and 7.2.4. We will end the chapter by discussing the
results in chapter 7.2.5.

33

7. Experiment Results

7.2.1. Results from Algorithms

Backward

The Backward algorithm calculates a route change with six rounds.

As can be seen in the route change diagram in figure 7.22, not every round affects
the current flow.

When looking at the round trip time diagram in figure 7.23, we can see an early fall
in the round trip time of most flows. This is due to the temporary shortening of the
routes, as can be seen in figure 7.22. When the new routes are fully installed, the
round trip time rises again, as they are similar in length.

0 10 20 30 40

−10

−5

0

5

10

15

20

25

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure 7.22.: Links disappearing
and newly appearing
in traceroutes when
running the Backward
algorithm

0 10 20 30 40

1000

1200

1400

1600

1800

2000

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure 7.23.: Round-Trip-Time be-
tween source and
destination of all
flows during the route
changes of the Back-
ward algorithm

Looking at the retries in figure 7.24 and the packet loss in figure 7.25, we can see
only slight packet loss and retries during route changes. We think that these occur
due to a bug in RouterOS, which loses some packets during route changes, we have
described in chapter 6.4.2. Comparing the diagrams shows some retries starting at
around 30 seconds into the test. The need for these retries cannot be caused by our
route change, as it is already over at that point. We theorize that this is caused by
one of the routers not being able to handle the test trafficwithout dropping packets.
When we look at the last round, this seems to be either router six or router seven.
While router seven has to route four flows at this point, there are other routers
routing four flows as well.

34

7. Experiment Results

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

0.5

1

1.5

2

2.5

3

3.5

4
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure 7.24.: Bandwidth and retries
during the execution of
the Backward algorithm

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure 7.25.: Lost packets in our ping
test when executing the
route change with the
backward algorithm

When looking at figure 7.26, we can see that, when we leave no extra time between
rounds, the whole process took between 696 ms and 1933 ms, with a median of
1004 ms. All rounds took similarly long.

Complete-Time Init-Time Round-1 Round-2 Round-3 Round-4 Round-5 Round-6

0

500

1000

1500

2000

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure 7.26.: Time that it takes to apply the changes using the Backward algorithm,
if we leave no time between rounds

Brute-force

The Brute-force algorithm generates a solution with only four rounds.

Most visible changes happen in round one, as can be seen in the link change dia-
gram in figure 7.27.

35

7. Experiment Results

0 10 20 30 40

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure 7.27.: Links disappearing
and newly appearing
in traceroutes when
running the Brute-Force
algorithm

0 10 20 30 40

7.4

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure 7.28.: Latency of all flows
when running the
Brute-force algorithm

Especially interesting is that the first round mostly removes links, while the other
rounds add them back again. This can also be seen in the latency plot in figure 7.28.

Due tomost changes happening in round one, we canmeasure themost retries and
packet loss in that round. While we can measure up to four retries, the bandwidth
stays at 50 Mbit/s. We can also see some retries in figure 7.29 after the end of the
route change. This is the same behavior as with the Backward algorithm and sug-
gests that the issue is with the route and not the route change.

Applying the route changes takes between 508ms and 1450ms, with a median of
732ms. As is shown in figure 7.30, all rounds take a similar amount of time, with
round one taking the longest.

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5

6

7

8
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure 7.29.: Bandwidth and retries
during the execution
of the Brute-force algo-
rithm

Complete-Time Init-Time Round-1 Round-2 Round-3 Round-4
0

200

400

600

800

1000

1200

1400

1600

1800

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure 7.30.: Time that it takes to
apply the changes us-
ing the Brute-force al-
gorithm, if we leave no
time between rounds

36

7. Experiment Results

Greedy

The Greedy algorithm takes five rounds to complete the route change.

Some packet loss occurs in all rounds, with round one having the most, as can be
seen in figure 7.31. This is likely due to most changes happening in that round, as
can be seen in the link change diagram in figure 7.32. The bandwidth stays at 50
Mbit/s. One difference to the Greedy and Brute-force algorithm is that we do not
see packet loss after the update finished, when sleeping between rounds. We can
see the same packet loss when executing one round directly after the previous one,
as can be seen in figure 7.33.

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5

6

7
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure 7.31.: Bandwidth and retries
during the execution of
the Greedy algorithm

0 10 20 30 40

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure 7.32.: Links disappearing
and newly appearing
in traceroutes when
running the Greedy
algorithm

The time it takes to apply the changeswasbetween593msand 1823ms,with 906.5ms
being the median. As can be seen in figure 7.34, the time each round takes varies
slightly with round 5 normally being the fastest one.

0 5 10
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5

6

7
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure 7.33.: Bandwidth and retries
during the execution of
the greedy algorithm,
when no extra time
between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3 Round-4 Round-5

0

200

400

600

800

1000

1200

1400

1600

1800

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure 7.34.: Time that it takes to ap-
ply the changes using
the greedy algorithm, if
we leave no time be-
tween rounds

37

7. Experiment Results

Chronicle

Chronicle schedules all changes in round one, as there is no congestion.

Doing all changes simultaneously in a non-time-based network comes with extra
packet loss, as can be seen in figure 7.35. This can also be seen when looking at
the retries in figure 7.36. Contrary to other algorithms, we can see a slight loss in
bandwidth for flow three. The slight packet loss after the route change known from
the Backward and Brute-force algorithms cannot be seen here.

0 10 20 30 40
0

5

10

15

20

25

30

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure 7.35.: Lost packets in our ping
test when executing the
route change with the
Chronicle algorithm

0 10 20 30 40
47

47.5

48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50

60
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure 7.36.: Bandwidth and retries
during the execution of
the Chronicle algorithm

When looking at the round trip time in figure 7.37, we can see a short spike when
the changes are applied.

Figure 7.38 shows that the whole process takes 356 ms to 782 ms with a median of
491ms.

0 10 20 30 40
1300

1400

1500

1600

1700

1800

1900

2000

2100 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure 7.37.: Round-Trip-Time be-
tween source and desti-
nation of all flows dur-
ing the route changes of
the Chronicle algorithm

Complete-Time Init-Time Round-1

200

300

400

500

600

700

800

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure 7.38.: Time that it takes to
apply the changes us-
ing the Chronicle algo-
rithm, if we leave no
time between rounds

38

7. Experiment Results

One-Round

The One-Round algorithm produces the same route change as the Chronicle algo-
rithm for this case. The results are therefore very similar.

A slight difference, which can be attributed to chance, is the change of flows that
lost bandwidth during the tests. Figure 7.39 shows that, contrary to Chronicle, all
flows have a small drop in bandwidth.

0 10 20 30 40
47

47.5

48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50

60

70 Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure 7.39.: Bandwidth and retries during the execution of the One-Round algo-
rithm

All results can be found in appendix A.

Three-Round

The Three-Round algorithm calculates the route change in three rounds. All visible
route changes are happening in round two.

When looking at the bandwidth in figure 7.40, we cannot see any bandwidth drop.
The retries for all flows are quite high, with flow one, three, and four being similar
to One-Round. Flow two has fewer retries than it has with One-Round and Chroni-
cle.

39

7. Experiment Results

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50

60

70

80 Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure 7.40.: Bandwidth and retries
during the execution of
the Three-Round algo-
rithm

0 5 10
47

47.5

48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50

60
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure 7.41.: Bandwidth and retries
during the execution of
the Three-Round algo-
rithm, when no extra
time between rounds

The reason that One-Round has not even less packet loss could be that in round
one, only four routes (two in flow two and two in flow three) are set. This is because
of the default route already covering almost all routers, and therefore almost no
changes are possible without affecting the current flow.

When looking at the results from our tests without sleeping between rounds in fig-
ure 7.41, we can see that there is a small loss in bandwidth for all flows. The retries
do not differ much to sleeping five seconds between rounds.

As shown in figure 7.42, the route change was executed in 449 ms to 1458 ms with a
median of 706 ms.

Complete-Time Init-Time Round-1 Round-2 Round-3
0

200

400

600

800

1000

1200

1400

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure 7.42.: Time that it takes to apply the changes using the Three-Round algo-
rithm, if we leave no time between rounds

40

7. Experiment Results

7.2.2. Comparison of Algorithms

The number of rounds of loop-free algorithms is between four and six. Brute-force
only needs four rounds, the Backward algorithm needs six rounds. One-Round and
Chronicle generate route changes with one round, but without the guarantee of
loop-freedom.

As canbe seen infigure 7.43, Brute-force, Backward andGreedydohave amaximum
of one lost ICMP-Echo in our tests. Chronicle and One-Round have themost packet
losswith up to 20 lost ICMP-Echos and amedian of 8 lost ICMP-Echos. Three-Round
comes in between both with up to 13 lost ICMP-Echos and a median of 3 lost ICMP-
Echos.

Backward Brute-force Chronicle Greedy One-Round Three-Round

0

5

10

15

20

Algorithm

Lo
st

 p
in

g
pa

ck
et

s

Figure 7.43.: Comparison of lost packets for the different algorithms

7.2.3. Performance Comparison

As is shown in figure 7.44, the fastest algorithms are Chronicle and One-Roundwith
around 480 ms execution time, followed by Three-Round and Brute-force, which
are nearly 230 ms slower. Greedy is 200 ms slower than Three-Round and Brute-
force, but still a bit faster than Backward, which is still 100 ms slower than Greedy.
This roughly fits with the number of rounds the algorithms need.

7.2.4. Comparison of Calculation Time

The calculation time differs for the different algorithms as shown in figure 7.45.
While One-Round, Backward, Chronicle and Three-Round need less than one mil-
lisecond, Brute-force needs between 1.9 seconds and 2.1 seconds, Greedy between

41

7. Experiment Results

Backward Brute-force Chronicle Greedy One-Round Three-Round

500

1000

1500

2000

Algorithm

A
pp

ly
 ti

m
e

(m
s)

Figure 7.44.: Comparison of the time it took to apply the routes for the different
algorithms

0.17 seconds and 0.21 seconds. This demonstrates the high calculation-complexity
of Brute-force for complicated route changes.

Backward Brute-force Chronicle Greedy One-Round Three-Round

0

0.5

1

1.5

2

Algorithm

C
al

cu
la

tio
n

tim
e

(s
)

Figure 7.45.: Comparison of the time it took to calculate the routes for the different
algorithms

7.2.5. Discussion Of Route Change 2

The results exhibit a greater variation by algorithm in comparison to our initial test
route change.

42

7. Experiment Results

If we stay with loop-free algorithms, Greedy is the best for this route change, as
it can be calculated 1.8 seconds faster and executed only 0.2 seconds slower than
Brute-force. If some packet loss resulting in slight temporary loss of bandwidth
is acceptable, One-Round and Three-Round can both be calculated in less than a
millisecond and executed in under 500 milliseconds. Three-Round takes 230 ms
longer during the execution, but has less packet loss.

If there are no requirements for the time it takes to calculate the route change,
Brute-force provides a very good result, as it is as fast as Three-Round, but with-
out packet loss.

7.3. Going backward

We assess the algorithms’ ability to produce schedules for route changes that alter
the direction of the traffic flow on numerous links as a third test case. Each link
that goes in the opposite direction than before potentially creates a small loop be-
tween the two connected routers. A key advantage of round-based route change
algorithms is the ability to deal with potential loops, therefore, it is important to
test them for small loops as well. We tested the following route changes. Each row
represents a flow and each number a route. Figure 7.46 visualizes the changes.

1. 1, 2, 3, 4, 5, 6, 7, 8 to 1, 7, 6, 5, 4, 8
2. 2, 3, 4, 5, 6, 7 to 2, 6, 5, 4, 8, 7
3. 3, 2, 1, 8, 7, 6 to 3, 4, 8, 7, 6
4. 4, 3, 2, 1, 8, 7, 6, 5 to 4, 8, 1, 2, 3, 5

Figure 7.46.: Graphic of the third route change

We will present the results of this route change in chapter 7.3.1, followed by com-
parisons in chapter 7.3.2, 7.3.3 and 7.3.4. We will end the chapter by discussing the
results in chapter 7.3.5.

43

7. Experiment Results

7.3.1. Result from Algorithms

Backward

The Backward algorithm needs five rounds for the route change.

Figure 7.47 shows that the route change contains two rounds,without visible changes.
Contrary to Greedy, Backward does not shorten the path first.

Interestingly, similar to the results in chapter 7.2.1, we can see some retries in fig-
ure 7.48 starting five seconds after all changes are already finished. Other than that,
the retry values align with the ones we have seen during other route changes. We
attribute them to the issue explained in chapter 6.4.2. The bandwidth stays at 50
Mbit/s.

0 10 20 30 40

−10

−5

0

5

10

15

20

25

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure 7.47.: Links disappearing
and newly appearing
in traceroutes when
running the Backward
algorithm

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

0.5

1

1.5

2

2.5

3

3.5

4
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure 7.48.: Bandwidth and retries
during the execution of
the Backward algorithm

As shown in figure 7.49, the time it took to apply the changes using Backward was
between 557 ms and 1696 ms.

44

7. Experiment Results

Complete-Time Init-Time Round-1 Round-2 Round-3 Round-4 Round-5
0

200

400

600

800

1000

1200

1400

1600

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure 7.49.: Time that it takes to apply the changes using the Backward algorithm,
if we leave no time between rounds

Greedy

Greedy calculates the route change in four rounds.

Looking at figure 7.50,we can see somepacket loss throughout andafter the changes,
with most at the 5 and 20 second mark. We attribute this package-loss to the bug
explained in chapter 6.4.2. The bandwidth stays at 50 Mbit/s throughout the test.

The latency in figure 7.51 falls in round one, which indicates that the route is first
being shorted and later is extended again. It falls in round two for flows 3 and 4,
again. The latency of all flows rises in round four. There are small latency spikes
when rounds are applied.

45

7. Experiment Results

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5

6

7
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure 7.50.: Bandwidth and retries during the execution of the Greedy algorithm

0 10 20 30 40

9.6

9.7

9.8

9.9

10

10.1

10.2 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure 7.51.: Latency between source and destination of all flows during a route
change with the Greedy algorithm

The time it takes to apply those changes was, in our tests, between 496 ms and
1395 ms with a median of 696 ms. As is shown in figure 7.52, round one takes the
longest time with 121 ms to 323 ms.

46

7. Experiment Results

Complete-Time Init-Time Round-1 Round-2 Round-3 Round-4
0

200

400

600

800

1000

1200

1400

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure 7.52.: Time that it takes to apply the changes using the greedy algorithm, if
we leave no time between rounds

Brute-force

Brute-force and Greedy generate the same route change. The results do not differ
much.

All results can be found in appendix A.

Chronicle

Chronicle schedules all changes in the first round, as there is no congestion.

Contrary to the previous algorithms, Chronicle, executed in a non-time-based net-
work, generates a lot more packet loss and therefore needsmore retries. As we can
see in figure 7.53, all flows are negatively affected by round one. Flow 3 does even
suffer a short bandwidth drop.

47

7. Experiment Results

0 10 20 30 40
47

47.5

48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50

60 Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure 7.53.: Bandwidth and retries
during the execution of
the Chronicle algorithm

0 10 20 30 40
1300

1350

1400

1450

1500

1550

1600

1650
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure 7.54.: Round-Trip-Time be-
tween source and
destination of all flows
during the chronicle
algorithm

The propagation time is between 354 ms and 735 ms, with a median of 493.5 ms, as
is visible in figure 7.55.

Complete-Time Init-Time Round-1

200

300

400

500

600

700

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure 7.55.: Time that it takes to apply the changes using the chronicle algorithm,
if we leave no time between rounds

One-Round

Brute-force and Greedy generate the same route change. The results do therefore
not differ much.

One noticeable difference is that we cannot see any bandwidth drop in figure 7.56
during the test.

48

7. Experiment Results

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure 7.56.: Bandwidth and retries during the execution of the One-Round algo-
rithm

All results can be found in appendix A.

49

7. Experiment Results

Three-Round

Three-Round generated a route change with three rounds.

While flowone and twohave similar numbers of retries toOne-Round, the retries of
flow four are even higher. The retries of flow three, as can be seen in figure 7.57, are
significantly lower and comparable to loop-free algorithms. The bandwidth stays
at 50 Mbit/s throughout the test. There are some retries, starting around the time,
where the cleanup round ran.

The latency and round trip time are comparable to Chronicle, but shifted by five
seconds.

Thepropagation timeofThree-Roundwasbetween469msand 1558ms,with 702.5ms
being the median. Figure 7.58 shows that 74 ms to 841 ms of that time can be at-
tributed to the cleanup round.

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

20

40

60

80

Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure 7.57.: Bandwidth and retries
during the execution of
the Three-Round algo-
rithm

Complete-Time Init-Time Round-1 Round-2 Round-3
0

200

400

600

800

1000

1200

1400

1600

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure 7.58.: Time that it takes to ap-
ply the changes using
the Three-Round algo-
rithm, if we leave no
time between rounds

7.3.2. Comparison of Algorithms

Loop-free route-update algorithms schedule four (Brute-force, Greedy) orfive (Back-
ward) rounds to achieve this route change. Algorithms not adhering to the prin-
cipals of loop-freedom need one (One-Round, Chronicle) or three rounds (Three-
Round).

When comparing the results of our ping tests in figure 7.59, the difference in packet
loss between loop-free algorithms and non-loop-free algorithms is clearly visible.
While Backward, Brute-force and Greedy have a maximum of two lost ICMP-Echo
packets, One-Round andChronicle have amaximumof 12. Three-Roundhas amax-
imum of 10 lost ICMP-Echo packets, but a median of 0, like loop-free algorithms.

50

7. Experiment Results

Backward Brute-force Chronicle Greedy One-Round Three-Round

0

2

4

6

8

10

12

Algorithm

Lo
st

 p
in

g
pa

ck
et

s

Figure 7.59.: Comparison of lost packets for the different algorithms

7.3.3. Performance Comparison

As can be expected and is shown in figure 7.60, the algorithms with only one round
apply faster than the algorithms with more than one round. Brute-force, Greedy,
andThree-Roundare typically around200ms slower thanChronicle andOne-Round.
Backward is typically 70ms slower than Brute-force, Greedy, and Three-Round.

Backward Brute-force Chronicle Greedy One-Round Three-Round

400

600

800

1000

1200

1400

1600

Algorithm

A
pp

ly
 ti

m
e

(m
s)

Figure 7.60.: Comparison of the time it took to apply the routes for the different
algorithms

51

7. Experiment Results

7.3.4. Comparison of Calculation Time

Figure 7.61 shows that all algorithms calculated a schedule in a relatively short time.
Backward, Chronicle, One-Round and Three-Round need less than a millisecond.
Greedy needs between 0.16 s and 0.21 s and Brute-force between 0.21 s and 0.22 s.

Backward Brute-force Chronicle Greedy One-Round Three-Round

0

0.05

0.1

0.15

0.2

Algorithm

C
al

cu
la

tio
n

tim
e

(s
)

Figure 7.61.: Comparison of the time it took to calculate the routes for the different
algorithms

7.3.5. Discussion Of Route Change 3

The route change is less complex than the one in chapter 7.2. The differences be-
tween the algorithms are smaller. When minimizing packet loss, we recommend
Greedy and Backward for this route change, as they both provide a solution with
almost no packet loss and a similar execution time.

One-Round and Chronicle are still 200 ms faster, but have around 6 times more
packet loss. Therefore, if time is important and packet loss does not matter as
much, One-Round seems to be the best fit.

52

8. Discussion

In chapter 7.1, 7.2, and 7.3 we looked at the results of running the algorithms de-
scribed in chapter 3 on real world hardware. We will discuss the results in this
chapter, by looking at the results. We use the median values for all time measure-
ments.

The results show that, while there are significant effects to the packet loss resulting
from the choice between loop-free algorithms andnon-loop-free algorithms, it only
slightly affects the bandwidth. The propagation time of the algorithms adhering to
the rules of loop-freedom was, in our more complex tests, almost double that of
those that do not.

The Backward algorithm calculated all our route changes in less than a millisec-
ond and delivered loop-free results with onlyminimal packet loss. The propagation
time of Backward was the worst of the algorithms tested, with 1000 ms and 773 ms
in test two and three. Test one had identical schedules with Backward, Greedy and
Brute-force that applied in 386ms. In both complex cases (chapter 7.2 and chapter
7.3), the Backward algorithm needed themost rounds with one or two roundsmore
than other loop-free algorithms, as it needs one round per changing route per flow.
This causes the Backward algorithm to scale worse than other algorithms.

The Greedy algorithm needed significantly more time to calculate than Backward,
but generated loop-free schedules with only minimal packet loss and fewer rounds
in both complex test scenarios. It took approximately 0.17 s to calculate each route
change, but is faster to apply the changes than when using Backward, with 906ms
and 696ms in tests two and three. Greedy should be able to scale better than Back-
ward, as it does not need one extra round per changing route.

Brute-force generated loop-free schedules with only minimal packet loss and the
fewest rounds for all three tests. While the calculation time for our first, very simple
test was equal to the calculation time of Greedy, it had significantly worse results
in our other tests. In test three, it was already 40 ms slower. In test two, it took
more than ten times as long as Greedy at 1.96 s. Test two shows that Brute-force can
be quite slow to calculate if confronted with a complicated route change. It had the
shortest apply-time of loop-free algorithmswith 386ms, 732ms and 708ms for tests
one to three.

Chronicle and One-Round generated the same schedules for all three test cases,
as we did not test a network with congestion. The schedules were not loop-free,
but used flow swapping. The calculation time of One-Round and Chronicle was
quite similar, with One-Round being 120 𝜇s to 180 𝜇s faster. One-Round’s calculation
timewas similar to the calculation time of the Backward algorithm. Chronicle’s and

53

8. Discussion

One-Round’s schedules could be applied in 408ms, 480ms and 494ms in tests one
to three. We could observe up to 3% packet loss during the second route update.
This translates to around 5ms to 10ms loss of connectivity. While this is more than
loop-free algorithms, that experienced up to 1ms of packet loss in our tests, it is still
significantly less than the around 300 ms the handover between wireless networks
causes [Zha+07]. Mizrahi andMoses [MM16a] state that if route changes occur every
minute, then transient disruptions must be limited to just a few milliseconds.

Three-Round scheduled fewer rounds than loop-free algorithms in test two and
three. It was calculated in less than a millisecond and applied in 624 ms, 706 ms
and 702 ms. It produced less packet loss than Chronicle and One-Round for some
flows, with sometimes producing as little as loop-free algorithms. In our first test,
it had a maximum of only one lost ICMP-Echo packet, compared to the maximum
of seven packets for One-Round and Chronicle. During the second and third test,
Three-Round causedmore lost packets than loop-free algorithms with a maximum
of 13 and 10 lost ICMP-Echos compared to the one and two by loop-free algorithms.
In contrast to this, Chronicle and One-Round caused a maximum of 20 and 12 lost
ICMP-Echos. When looking at the flows in direct comparison, it is apparent that
Three-Round heavily profits from new routers that appear in the path. If all routers
of the new path are already present in the old path, it cannot do anything in the first
round.

Choosing the correct algorithm depends on the specific use-case. If you have time
or computing power to calculate changes beforehand, Brute-force is probably the
best. Greedy had fewer rounds than Backward in all our tests, while Backward was
significantly faster to calculate. If you do not have time, but can accept the up to 3%
packet loss during the route update, One-Round will achieve good results.

500 1000 1500 2000 2500

0

1

2

3

4

5

6

7

8
Algorithm

Backward
Brute-force
Chronicle
Greedy
One-Round
Three-Round

Median time it took to calculate and apply the changes (ms)

M
ed

ia
n

lo
st

 p
in

g
pa

ck
et

s

Figure 8.1.: Plot displaying the time it took to facilitate a route change and the pack-
age loss for our second test

54

8. Discussion

We identify this as the conflict between packet loss and time. Figure 8.1 makes this
conflict visible: None of the algorithms we tested could generate fast and packet
loss free results. Three-Round has a spot in between, with often slightly faster cal-
culation times than loop-free algorithmsand slightly less packet loss thanChronicle
and One-Round.

We executed all algorithms excludingChronicle for eachflow individually and com-
bined the results in one route change schedule, as suggested by Mahajan and Wat-
tenhofer [MW13]. We can therefore answer our first research question defined in
chapter 4 “How can algorithms for loop-free route updates in Software DefinedNet-
works be applied in multi-stream networks?”: As long as the flows cannot create
any congestion and the flows are routed by destination [MW13], combining the re-
sults of the algorithms for single flows achieves good results for route changes in
multi-flow environments. There is no need for specialized algorithms for multiple
streams in this case.

Our second research question “Howmuch packet loss does adapting time-based al-
gorithms cause for non-time-based Software Defined Networks?” is answered by
the numbers outlined above. We could observe up to 3% packet loss in our exper-
iments with time-based algorithms. In some cases, the packet loss of time-based
algorithms was 15 times that of loop-free algorithms.

55

9. Conclusion

In chapter 9.1, we will first summarize the results of this thesis. In chapter 9.2, we
will look at open questions that can be answered by further work.

9.1. Results

This thesis lookedat thefive route-update algorithmsBackward, Brute-force, Greedy,
Chronicle and One-Round already researched in literature. Additionally, we pro-
posed our own algorithm Three-Round, which works by updating routers that do
not have active traffic first.

Some of these algorithms are optimized for time-based networks. As these are not
yet common in real-world environments, we tried to emulate their behaviour. In
order to simultaneously update all routers, we proposed and tested sending a script
file to all routers as a first step. Afterwards, we executed the script file on all routers
at the same time.

We constructed a network of eight routers, one source, one destination and one
controller. To facilitate multiple tests, we developed four tools working together to
execute a route change and measure the effects of it.

In order to further research networks withmultiple flows, we executed all our tests
on four flows at the same time. During our tests, we did not run into any problems
caused by applying the route changes to multiple flows simultaneously. We can
therefore conclude that these algorithms work in multi-stream environments.

All our tests with non-time-based Software Defined Networks using time-based al-
gorithms did show packet loss. These did sometimes result in small bandwidth
drops. We could observe up to 30 ms connectivity loss during these route updates.
Most of the time it was around 5ms to 10ms.

These results underline the importance of choosing a route-update algorithm that
fits theuse-caseperfectly. The choice of algorithmcreates a conflict betweenpacket
loss and time. Algorithms adhering to the principals of round-based updates and
loop-freedom will, in most cases, have significantly less packet loss, but higher ex-
ecution times than algorithms that do not.

56

9. Conclusion

9.2. Future Work

This thesis focuses on the questions raised in chapter 4. There are still a lot of open
questions in the realm of route-updates.

As our routers were quite limited in respect to bandwidth, we think that testing
Chronicle with routers that have higher routing throughput might be interesting.
This way, one could test the congestion avoidance features of Chronicle. This is
already done for time-based SDNs by Mahajan and Wattenhofer [MW13] when in-
troducing Chronicle, but could be further tested on non-time-based SDNs like the
one in this thesis.

While we upload a script containing the changes needed to all routers first, we
started the execution of those from our central controller. An interesting approach
to emulate time-based SDNs even better with routers would be to use an inbuilt
scheduler to schedule the execution of the script. This is not something we have
looked into, as our routers did not support PTP, and we hoped to achieve higher
accuracy by starting the execution centrally than with time synchronization using
NTP.

While this thesis briefly looked into reducing the execution timeof the route changes,
we couldnot compare the execution timewith other technologies. Further research
into how technologies, like the ones we and Alkhatib [Alk24b] used, affect the prop-
agation time is needed to choose the perfect technology for a specific environment.

Aswewanted to create a realistic environment with hardware routers, wewere lim-
ited in regard to the amount of routers. One could look further into replicating the
results of this thesis in virtual networks, where it is possible to emulate hundreds
of routers and with delays between them.

These further works would lead to a deeper understanding of time-based SDNs and
efficient route updates.

57

Bibliography

[Alk24a] BasharAlkhatib. “AutomatisierungundOptimierungvon relaxiertenkre-
isfreien Routingupdates mit Ansible”. Bachelor’s Thesis. TU Dortmund
University, 2024.

[Alk24b] MohamedNourAlkhatib. “Untersuchungvonautomatisiertenkreisfreien
Routingupdates mit Ansible”. Bachelor’s Thesis. TU Dortmund Univer-
sity, 2024.

[Ami+16] Saeed Akhoondian Amiri, Arne Ludwig, Jan Marcinkowski, and Stefan
Schmid. “Transiently Consistent SDN Updates: Being Greedy is Hard”.
In: Structural Information and Communication Complexity. Ed. by Jukka
Suomela. Cham: Springer International Publishing, 2016, pp. 391–406.
ISBN: 978-3-319-48314-6.

[Che22] Djalel Chefrour. “Evolution of network time synchronization towards
nanoseconds accuracy:A survey”. In:Computer Communications 191 (2022),
pp. 26–35. ISSN: 0140-3664. DOI: https :// doi . org / 10 . 1016 / j . comcom .
2022.04.023. URL: https://www.sciencedirect.com/science/article/pii/
S0140366422001359.

[DMR21] Sushil C. Dimri, Preeti Malik, and Mangey Ram. Design and Analysis.
Berlin, Boston: De Gruyter, 2021. ISBN: 9783110693607. DOI: doi:10.1515/
9783110693607. URL: https://doi.org/10.1515/9783110693607.

[Doc] MikroTik API Documentation. https://help.mikrotik.com/docs/spaces/
ROS/pages/47579160/API. Accessed: 2025-01-16.

[För+18] Klaus-TychoFörster, ArneLudwig, JanMarcinkowski, andStefanSchmid.
“Loop-FreeRouteUpdates for Software-DefinedNetworks”. In: IEEE/ACM
Transactions on Networking 26.1 (2018), pp. 328–341. DOI: 10.1109/TNET.
2017.2778426.

[FSV19] Klaus-Tycho Förster, Stefan Schmid, and Stefano Vissicchio. “Survey of
Consistent Software-Defined Network Updates”. In: IEEE Communica-
tions Surveys & Tutorials 21.2 (2019), pp. 1435–1461. DOI: 10.1109/COMST.
2018.2876749.

[Inc] Red Hat Inc. How Ansible works. https://www.redhat.com/en/ansible-
collaborative/how-ansible-works?intcmp=7015Y000003t7aWQAQ. Accessed:
2025-03-24.

58

https://doi.org/https://doi.org/10.1016/j.comcom.2022.04.023
https://doi.org/https://doi.org/10.1016/j.comcom.2022.04.023
https://www.sciencedirect.com/science/article/pii/S0140366422001359
https://www.sciencedirect.com/science/article/pii/S0140366422001359
https://doi.org/doi:10.1515/9783110693607
https://doi.org/doi:10.1515/9783110693607
https://doi.org/10.1515/9783110693607
https://help.mikrotik.com/docs/spaces/ROS/pages/47579160/API
https://help.mikrotik.com/docs/spaces/ROS/pages/47579160/API
https://doi.org/10.1109/TNET.2017.2778426
https://doi.org/10.1109/TNET.2017.2778426
https://doi.org/10.1109/COMST.2018.2876749
https://doi.org/10.1109/COMST.2018.2876749
https://www.redhat.com/en/ansible-collaborative/how-ansible-works?intcmp=7015Y000003t7aWQAQ
https://www.redhat.com/en/ansible-collaborative/how-ansible-works?intcmp=7015Y000003t7aWQAQ

Bibliography

[Jal+17] Ahmad Jalili, Hamed Nazari, Sahar Namvarasl, and Manijeh Keshtgari.
“A comprehensive analysis on control planedeployment in SDN: In-band
versus out-of-band solutions”. In: 2017 IEEE 4th International Conference
on Knowledge-Based Engineering and Innovation (KBEI). 2017, pp. 1025–
1031. DOI: 10.1109/KBEI.2017.8324949.

[Jun99] Dieter Jungnickel. “The Greedy Algorithm”. In: Graphs, Networks and Al-
gorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 129–
153. ISBN: 978-3-662-03822-2. DOI: 10.1007/978- 3- 662- 03822- 2_5. URL:
https://doi.org/10.1007/978-3-662-03822-2_5.

[Kre+15] DiegoKreutz, FernandoM.V.Ramos, PauloEstevesVeríssimo,Christian
Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. “Software-
Defined Networking: A Comprehensive Survey”. In: Proceedings of the
IEEE 103.1 (2015), pp. 14–76. DOI: 10.1109/JPROC.2014.2371999.

[LMS15] Arne Ludwig, JanMarcinkowski, and Stefan Schmid. “Scheduling Loop-
freeNetworkUpdates: It’s Good to Relax!” In: Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing. PODC ’15. Donostia-
SanSebastián, Spain:Association forComputingMachinery, 2015, pp. 13–
22. ISBN: 9781450336178. DOI: 10 . 1145 / 2767386 . 2767412. URL: https ://
doi.org/10.1145/2767386.2767412.

[Mat+16] Ferrazani Mattos, Diogo Menezes, Muniz Bandeira Duarte, Otto Carlos,
and Guy Pujolle. “Reverse Update: A Consistent Policy Update Scheme
for Software-Defined Networking”. In: IEEE Communications Letters 20.5
(2016), pp. 886–889. DOI: 10.1109/LCOMM.2016.2546240.

[MM16a] Tal Mizrahi and Yoram Moses. “Software defined networks: It’s about
time”. In: IEEE INFOCOM 2016 - The 35th Annual IEEE International Con-
ference on Computer Communications. 2016, pp. 1–9. DOI: 10.1109/INFOCOM.
2016.7524418.

[MM16b] Tal Mizrahi and Yoram Moses. “Time4: Time for SDN”. In: IEEE Trans-
actions on Network and Service Management 13.3 (2016), pp. 433–446. DOI:
10.1109/TNSM.2016.2599640.

[MW13] Ratul Mahajan and Roger Wattenhofer. “On consistent updates in Soft-
ware Defined Networks”. In: Proceedings of the Twelfth ACMWorkshop on
Hot Topics in Networks. HotNets-XII. College Park, Maryland: Associa-
tion for ComputingMachinery, 2013. ISBN: 9781450325967. DOI: 10.1145/
2535771.2535791. URL: https://doi.org/10.1145/2535771.2535791.

[Sal94] PeterH. Salus.Aquarter century ofUNIX. USA:ACMPress/Addison-Wesley
Publishing Co., 1994. ISBN: 0201547775.

[Vin02] A. Vince. “A framework for the greedy algorithm”. In: Discrete Applied
Mathematics 121.1 (2002), pp. 247–260. ISSN: 0166-218X. DOI: https://doi.
org/10.1016/S0166-218X(01)00362-6. URL: https://www.sciencedirect.com/
science/article/pii/S0166218X01003626.

[XLH] Jiqiang Xia, Julong Lan, and Yuxiang Hu. “P4lof: Scheduling Loop-Free
Updates for Multiple Flows in Sdn”. In: Available at SSRN 4106297 ().

59

https://doi.org/10.1109/KBEI.2017.8324949
https://doi.org/10.1007/978-3-662-03822-2_5
https://doi.org/10.1007/978-3-662-03822-2_5
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1145/2767386.2767412
https://doi.org/10.1145/2767386.2767412
https://doi.org/10.1145/2767386.2767412
https://doi.org/10.1109/LCOMM.2016.2546240
https://doi.org/10.1109/INFOCOM.2016.7524418
https://doi.org/10.1109/INFOCOM.2016.7524418
https://doi.org/10.1109/TNSM.2016.2599640
https://doi.org/10.1145/2535771.2535791
https://doi.org/10.1145/2535771.2535791
https://doi.org/10.1145/2535771.2535791
https://doi.org/https://doi.org/10.1016/S0166-218X(01)00362-6
https://doi.org/https://doi.org/10.1016/S0166-218X(01)00362-6
https://www.sciencedirect.com/science/article/pii/S0166218X01003626
https://www.sciencedirect.com/science/article/pii/S0166218X01003626

Bibliography

[Zha+07] Yanfeng Zhang, Yongqiang Liu, Yong Xia, and Quan Huang. “LeapFrog:
Fast, TimelyWiFiHandoff”. In: IEEEGLOBECOM2007 - IEEEGlobal Telecom-
munications Conference. 2007, pp. 5170–5174. DOI: 10.1109/GLOCOM.2007.
980.

[Zhe+17] Jiaqi Zheng,GuihaiChen, StefanSchmid,HaipengDai, and JieWu. “Chronus:
Consistent Data Plane Updates in Timed SDNs”. In: 2017 IEEE 37th Inter-
national Conference onDistributedComputing Systems (ICDCS). 2017, pp. 319–
327. DOI: 10.1109/ICDCS.2017.96.

[Zhe+18] Jiaqi Zheng, Bo Li, Chen Tian, Klaus-Tycho Förster, Stefan Schmid, Gui-
hai Chen, and Jie Wux. “Scheduling Congestion-Free Updates of Mul-
tiple Flows with Chronicle in Timed SDNs”. In: 2018 IEEE 38th Interna-
tional Conference on Distributed Computing Systems (ICDCS). 2018, pp. 12–
21. DOI: 10.1109/ICDCS.2018.00012.

[Zhe+19] Jiaqi Zheng, Bo Li, Chen Tian, Klaus-Tycho Förster, Stefan Schmid, Gui-
hai Chen, Jie Wu, and Rui Li. “Congestion-Free Rerouting of Multiple
Flows in Timed SDNs”. In: IEEE Journal on Selected Areas in Communica-
tions 37.5 (2019), pp. 968–981. DOI: 10.1109/JSAC.2019.2906741.

60

https://doi.org/10.1109/GLOCOM.2007.980
https://doi.org/10.1109/GLOCOM.2007.980
https://doi.org/10.1109/ICDCS.2017.96
https://doi.org/10.1109/ICDCS.2018.00012
https://doi.org/10.1109/JSAC.2019.2906741

A. Appendix: Results

Results from chapter 7.1

Backward

Leaving 5 seconds between rounds

Complete-Time Init-Time Round-1 Round-2

0

2k

4k

6k

8k

10k

Apply-Time

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.1.: Time that it takes to apply
the changes using a sched-
ule generated by Backward

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5

6
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.2.: Bandwidth and retries dur-
ing the execution of the
Backward algorithm

0 10 20 30 40

3.3

3.4

3.5

3.6

3.7

3.8

3.9
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure A.3.: Latency between source
and destination of all flows
during a route change with
the Backward algorithm

0 10 20 30 40

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.4.: Links disappearing and
newly appearing in tracer-
outes when running the
Backward algorithm

61

A. Appendix: Results

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.5.: Lost packets in our ping
test when executing a route
change with the Backward
algorithm

0 10 20 30 40

900

1000

1100

1200

1300

1400

1500

1600

1700
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.6.: Round-Trip-Time between
source and destination of
all flows during the route
changes of the Backward
algorithm

Leaving no time between rounds

Complete-Time Init-Time Round-1 Round-2
0

200

400

600

800

1000

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.7.: Time that it takes to apply
the changes using a sched-
ule generated by Backward

0 5 10
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.8.: Bandwidth and retries dur-
ing the execution of the
Backward algorithm

0 10 20 30 40

3.3

3.4

3.5

3.6

3.7

3.8

3.9
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

62

A. Appendix: Results

Figure A.9.: Latency between source
and destination of all flows
during a route change with
the Backward algorithm

0 5 10

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.10.: Links disappearing and
newly appearing in tracer-
outes when running the
Backward algorithm

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.11.: Lost packets in our ping
test when executing a route
change with the Backward
algorithm

0 2 4 6 8 10 12 14

900

1000

1100

1200

1300

1400

1500

1600

1700
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.12.: Round-Trip-Time between
source and destination of
all flows during the route
changes of the Backward
algorithm

63

A. Appendix: Results

Brute-force

Leaving 5 seconds between rounds

Complete-Time Init-Time Round-1 Round-2

0

2k

4k

6k

8k

10k

Apply-Time

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.13.: Time that it takes to ap-
ply the changes using a
schedule generated by
Brute-force

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5

6
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.14.: Bandwidth and retries dur-
ing the execution of the
Brute-force algorithm

0 10 20 30 40

1.5

1.6

1.7

1.8

1.9

2

2.1 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure A.15.: Latency between source
and destination of all flows
during a route change with
the Brute-force algorithm

0 10 20 30 40

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.16.: Links disappearing and
newly appearing in tracer-
outes when running the
Brute-force algorithm

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.17.: Lost packets in our ping
test when executing a
route change with the
Brute-force algorithm

64

A. Appendix: Results

0 10 20 30 40

900

1000

1100

1200

1300

1400

1500

1600

1700 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.18.: Round-Trip-Time between
source and destination of
all flows during the route
changes of the Brute-force
algorithm

Leaving no time between rounds

Complete-Time Init-Time Round-1 Round-2

100

200

300

400

500

600

700

800

900

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.19.: Time that it takes to ap-
ply the changes using a
schedule generated by
Brute-force

0 5 10
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5

6
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.20.: Bandwidth and retries dur-
ing the execution of the
Brute-force algorithm

0 10 20 30 40

1.5

1.6

1.7

1.8

1.9

2

2.1 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

65

A. Appendix: Results

Figure A.21.: Latency between source
and destination of all flows
during a route change with
the Brute-force algorithm

0 5 10

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.22.: Links disappearing and
newly appearing in tracer-
outes when running the
Brute-force algorithm

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.23.: Lost packets in our ping
test when executing a
route change with the
Brute-force algorithm

0 2 4 6 8 10 12 14

900

1000

1100

1200

1300

1400

1500

1600

1700
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.24.: Round-Trip-Time between
source and destination of
all flows during the route
changes of the Brute-force
algorithm

66

A. Appendix: Results

Chronicle

Leaving 5 seconds between rounds

Complete-Time Init-Time Round-1
0

1000

2000

3000

4000

5000

Apply-Time

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.25.: Time that it takes to apply
the changes using a sched-
ule generatedbyChronicle

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.26.: Bandwidth and retries dur-
ing the execution of the
Chronicle algorithm

0 10 20 30 40

4.7

4.8

4.9

5

5.1

5.2

5.3 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure A.27.: Latency between source
and destination of all flows
during a route change with
the Chronicle algorithm

0 10 20 30 40

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.28.: Links disappearing and
newly appearing in tracer-
outes when running the
Chronicle algorithm

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.29.: Lost packets in our ping
test when executing a
route change with the
Chronicle algorithm

67

A. Appendix: Results

0 10 20 30 40

900

1000

1100

1200

1300

1400

1500

1600

1700
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.30.: Round-Trip-Time between
source and destination of
all flows during the route
changes of the Chronicle
algorithm

Leaving no time between rounds

Complete-Time Init-Time Round-1

200

300

400

500

600

700

800

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.31.: Time that it takes to apply
the changes using a sched-
ule generated by Chronicle

0 5 10
48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.32.: Bandwidth and retries dur-
ing the execution of the
Chronicle algorithm

0 10 20 30 40

4.7

4.8

4.9

5

5.1

5.2

5.3 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

68

A. Appendix: Results

Figure A.33.: Latency between source
and destination of all flows
during a route changewith
the Chronicle algorithm

0 5 10

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.34.: Links disappearing and
newly appearing in tracer-
outes when running the
Chronicle algorithm

0 5 10 15
0

0.5

1

1.5

2

2.5

3 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.35.: Lost packets in our ping
test when executing a
route change with the
Chronicle algorithm

0 2 4 6 8 10 12 14

900

1000

1100

1200

1300

1400

1500

1600

1700
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.36.: Round-Trip-Time between
source and destination of
all flows during the route
changes of the Chronicle
algorithm

69

A. Appendix: Results

Greedy

Leaving 5 seconds between rounds

Complete-Time Init-Time Round-1 Round-2

0

2k

4k

6k

8k

10k

Apply-Time

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.37.: Time that it takes to apply
the changes using a sched-
ule generated by Greedy

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5

6
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.38.: Bandwidth and retries dur-
ing the execution of the
Greedy algorithm

0 10 20 30 40

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure A.39.: Latency between source
and destination of all flows
during a route change with
the Greedy algorithm

0 10 20 30 40

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.40.: Links disappearing and
newly appearing in tracer-
outes when running the
Greedy algorithm

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.41.: Lost packets in our ping
testwhen executing a route
change with the Greedy al-
gorithm

70

A. Appendix: Results

0 10 20 30 40

900

1000

1100

1200

1300

1400

1500

1600

1700 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.42.: Round-Trip-Time between
source and destination of
all flows during the route
changes of the Greedy al-
gorithm

Leaving no time between rounds

Complete-Time Init-Time Round-1 Round-2
0

200

400

600

800

1000

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.43.: Time that it takes to apply
the changes using a sched-
ule generated by Greedy

0 5 10
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5

6
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.44.: Bandwidth and retries dur-
ing the execution of the
Greedy algorithm

0 10 20 30 40

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

71

A. Appendix: Results

Figure A.45.: Latency between source
and destination of all flows
during a route changewith
the Greedy algorithm

0 5 10

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.46.: Links disappearing and
newly appearing in tracer-
outes when running the
Greedy algorithm

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.47.: Lost packets in our ping
test when executing a route
change with the Greedy al-
gorithm

0 2 4 6 8 10 12 14

900

1000

1100

1200

1300

1400

1500

1600

1700
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.48.: Round-Trip-Time between
source and destination of
all flows during the route
changes of the Greedy al-
gorithm

72

A. Appendix: Results

One-Round

Leaving 5 seconds between rounds

Complete-Time Init-Time Round-1
0

1000

2000

3000

4000

5000

Apply-Time

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.49.: Time that it takes to ap-
ply the changes using a
schedule generated by
One-Round

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.50.: Bandwidth and retries dur-
ing the execution of the
One-Round algorithm

0 10 20 30 40

5.6

5.7

5.8

5.9

6

6.1

6.2 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure A.51.: Latency between source
and destination of all flows
during a route change with
the One-Round algorithm

0 10 20 30 40

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.52.: Links disappearing and
newly appearing in tracer-
outes when running the
One-Round algorithm

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.53.: Lost packets in our ping
test when executing a
route change with the
One-Round algorithm

73

A. Appendix: Results

0 10 20 30 40

900

1000

1100

1200

1300

1400

1500

1600

1700
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.54.: Round-Trip-Time between
source and destination of
all flows during the route
changes of the One-Round
algorithm

Leaving no time between rounds

Complete-Time Init-Time Round-1

200

300

400

500

600

700

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.55.: Time that it takes to ap-
ply the changes using a
schedule generated by
One-Round

0 5 10
48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.56.: Bandwidth and retries dur-
ing the execution of the
One-Round algorithm

0 10 20 30 40

5.6

5.7

5.8

5.9

6

6.1

6.2 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

74

A. Appendix: Results

Figure A.57.: Latency between source
and destination of all flows
during a route change with
the One-Round algorithm

0 5 10

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.58.: Links disappearing and
newly appearing in tracer-
outes when running the
One-Round algorithm

0 5 10 15
0

0.5

1

1.5

2

2.5

3
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.59.: Lost packets in our ping
test when executing a
route change with the
One-Round algorithm

0 2 4 6 8 10 12 14

900

1000

1100

1200

1300

1400

1500

1600

1700 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.60.: Round-Trip-Time between
source and destination of
all flows during the route
changes of the One-Round
algorithm

75

A. Appendix: Results

Three-Round

Leaving 5 seconds between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3

0

2k

4k

6k

8k

10k

12k

14k

16k

Apply-Time

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.61.: Time that it takes to apply
the changes using a sched-
ule generated by Three-
Round

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.62.: Bandwidth and retries dur-
ing the execution of the
Three-Round algorithm

0 10 20 30 40
6.3

6.4

6.5

6.6

6.7

6.8

6.9

7

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure A.63.: Latency between source
and destination of all flows
during a route change
with the Three-Round
algorithm

0 10 20 30 40

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.64.: Links disappearing and
newly appearing in tracer-
outes when running the
Three-Round algorithm

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.65.: Lost packets in our ping
test when executing a
route change with the
Three-Round algorithm

76

A. Appendix: Results

0 10 20 30 40

900

1000

1100

1200

1300

1400

1500

1600

1700 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.66.: Round-Trip-Time between
source and destination
of all flows during the
route changes of the
Three-Round algorithm

Leaving no time between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3
0

200

400

600

800

1000

1200

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.67.: Time that it takes to apply
the changes using a sched-
ule generated by Three-
Round

0 5 10
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.68.: Bandwidth and retries dur-
ing the execution of the
Three-Round algorithm

0 10 20 30 40
6.3

6.4

6.5

6.6

6.7

6.8

6.9

7

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

77

A. Appendix: Results

Figure A.69.: Latency between source
and destination of all flows
during a route change
with the Three-Round
algorithm

0 5 10

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.70.: Links disappearing and
newly appearing in tracer-
outes when running the
Three-Round algorithm

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.71.: Lost packets in our ping
test when executing a
route change with the
Three-Round algorithm

0 2 4 6 8 10 12 14

900

1000

1100

1200

1300

1400

1500

1600

1700
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.72.: Round-Trip-Time between
source and destination
of all flows during the
route changes of the
Three-Round algorithm

78

A. Appendix: Results

Results from chapter 7.2

Backward

Leaving 5 seconds between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3 Round-4 Round-5 Round-6

0

5k

10k

15k

20k

25k

30k

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.73.: Time that it takes to apply
the changes using a sched-
ule generated by Backward

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

0.5

1

1.5

2

2.5

3

3.5

4
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.74.: Bandwidth and retries dur-
ing the execution of the
Backward algorithm

0 10 20 30 40

7.8

7.9

8

8.1

8.2

8.3

8.4

8.5
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure A.75.: Latency between source
and destination of all flows
during a route change with
the Backward algorithm

0 10 20 30 40

−10

−5

0

5

10

15

20

25

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.76.: Links disappearing and
newly appearing in tracer-
outes when running the
Backward algorithm

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.77.: Lost packets in our ping
test when executing a route
change with the Backward
algorithm

79

A. Appendix: Results

0 10 20 30 40

1000

1200

1400

1600

1800

2000

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.78.: Round-Trip-Time between
source and destination of
all flows during the route
changes of the Backward
algorithm

Leaving no time between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3 Round-4 Round-5 Round-6

0

500

1000

1500

2000

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.79.: Time that it takes to apply
the changes using a sched-
ule generated by Backward

0 5 10
46

47

48

49

50

51

52

0

1

2

3

4

5

6
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.80.: Bandwidth and retries dur-
ing the execution of the
Backward algorithm

0 10 20 30 40

7.8

7.9

8

8.1

8.2

8.3

8.4

8.5
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

80

A. Appendix: Results

Figure A.81.: Latency between source
and destination of all flows
during a route change with
the Backward algorithm

0 5 10

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.82.: Links disappearing and
newly appearing in tracer-
outes when running the
Backward algorithm

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.83.: Lost packets in our ping
test when executing a
route change with the
Backward algorithm

0 2 4 6 8 10 12 14
1300

1400

1500

1600

1700

1800

1900

2000

2100

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.84.: Round-Trip-Time between
source and destination of
all flows during the route
changes of the Backward
algorithm

81

A. Appendix: Results

Brute-force

Leaving 5 seconds between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3 Round-4

0

5k

10k

15k

20k

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.85.: Time that it takes to apply
the changes using a sched-
ule generated by Brute-
force

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5

6

7

8
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.86.: Bandwidth and retries dur-
ing the execution of the
Brute-force algorithm

0 10 20 30 40

7.4

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure A.87.: Latency between source
and destination of all flows
during a route change with
the Brute-force algorithm

0 10 20 30 40

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.88.: Links disappearing and
newly appearing in tracer-
outes when running the
Brute-force algorithm

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.89.: Lost packets in our ping
test when executing a
route change with the
Brute-force algorithm

82

A. Appendix: Results

0 10 20 30 40

1000

1200

1400

1600

1800

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.90.: Round-Trip-Time between
source and destination of
all flows during the route
changes of the Brute-force
algorithm

Leaving no time between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3 Round-4
0

200

400

600

800

1000

1200

1400

1600

1800

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.91.: Time that it takes to ap-
ply the changes using a
schedule generated by
Brute-force

0 5 10
48

48.5

49

49.5

50

50.5

51

0

2

4

6

8

Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.92.: Bandwidth and retries dur-
ing the execution of the
Brute-force algorithm

0 10 20 30 40

7.4

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

83

A. Appendix: Results

Figure A.93.: Latency between source
and destination of all flows
during a route change with
the Brute-force algorithm

0 5 10

−30

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.94.: Links disappearing and
newly appearing in tracer-
outes when running the
Brute-force algorithm

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.95.: Lost packets in our ping
test when executing a
route change with the
Brute-force algorithm

0 2 4 6 8 10 12 14
1300

1400

1500

1600

1700

1800

1900

2000

2100 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.96.: Round-Trip-Time between
source and destination of
all flows during the route
changes of the Brute-force
algorithm

84

A. Appendix: Results

Chronicle

Leaving 5 seconds between rounds

Complete-Time Init-Time Round-1
0

1000

2000

3000

4000

5000

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.97.: Time that it takes to apply
the changes using a sched-
ule generated by Chronicle

0 10 20 30 40
47

47.5

48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50

60
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.98.: Bandwidth and retries dur-
ing the execution of the
Chronicle algorithm

0 10 20 30 40

8.5

9

9.5

10

10.5
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure A.99.: Latency between source
and destination of all flows
during a route change with
the Chronicle algorithm

0 10 20 30 40

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.100.: Links disappearing
and newly appearing
in traceroutes when
running the Chronicle
algorithm

0 10 20 30 40
0

5

10

15

20

25

30

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.101.: Lost packets in our ping
test when executing a
route change with the
Chronicle algorithm

85

A. Appendix: Results

0 10 20 30 40
1300

1400

1500

1600

1700

1800

1900

2000

2100 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.102.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
Chronicle algorithm

Leaving no time between rounds

Complete-Time Init-Time Round-1

200

300

400

500

600

700

800

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.103.: Time that it takes to
apply the changes using
a schedule generated by
Chronicle

0 5 10
47

47.5

48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50

60

70
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.104.: Bandwidth and retries
during the execution of
the Chronicle algorithm

0 10 20 30 40

8.5

9

9.5

10

10.5
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

86

A. Appendix: Results

Figure A.105.: Latency between source
and destination of all
flows during a route
change with the Chroni-
cle algorithm

0 5 10

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.106.: Links disappearing
and newly appearing
in traceroutes when
running the Chronicle
algorithm

0 5 10 15
0

5

10

15

20

25

30

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.107.: Lost packets in our ping
test when executing a
route change with the
Chronicle algorithm

0 2 4 6 8 10 12 14
1300

1400

1500

1600

1700

1800

1900

2000 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.108.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
Chronicle algorithm

87

A. Appendix: Results

Greedy

Leaving 5 seconds between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3 Round-4 Round-5

0

5k

10k

15k

20k

25k

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.109.: Time that it takes to
apply the changes using
a schedule generated by
Greedy

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5

6

7
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.110.: Bandwidth and retries
during the execution of
the Greedy algorithm

0 10 20 30 40

6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure A.111.: Latency between source
and destination of all
flows during a route
change with the Greedy
algorithm

0 10 20 30 40

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.112.: Links disappearing and
newly appearing in tracer-
outes when running the
Greedy algorithm

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.113.: Lost packets in our ping
test when executing a
route change with the
Greedy algorithm

88

A. Appendix: Results

0 10 20 30 40

1000

1200

1400

1600

1800

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.114.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
Greedy algorithm

Leaving no time between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3 Round-4 Round-5

0

200

400

600

800

1000

1200

1400

1600

1800

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.115.: Time that it takes to ap-
ply the changes using a
schedule generated by
Greedy

0 5 10
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5

6

7
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.116.: Bandwidth and retries
during the execution of
the Greedy algorithm

0 10 20 30 40

6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

89

A. Appendix: Results

Figure A.117.: Latency between source
and destination of all
flows during a route
change with the Greedy
algorithm

0 5 10

−30

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.118.: Links disappearing and
newly appearing in tracer-
outes when running the
Greedy algorithm

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.119.: Lost packets in our ping
test when executing a
route change with the
Greedy algorithm

0 2 4 6 8 10 12 14
1300

1400

1500

1600

1700

1800

1900

2000
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.120.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
Greedy algorithm

90

A. Appendix: Results

One-Round

Leaving 5 seconds between rounds

Complete-Time Init-Time Round-1
0

1000

2000

3000

4000

5000

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.121.: Time that it takes to ap-
ply the changes using a
schedule generated by
One-Round

0 10 20 30 40
47

47.5

48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50

60

70 Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.122.: Bandwidth and retries
during the execution of
the One-Round algorithm

0 10 20 30 40

9

9.5

10

10.5

11
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure A.123.: Latency between source
and destination of all
flows during a route
change with the One-
Round algorithm

0 10 20 30 40

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.124.: Links disappearing and
newly appearing in
traceroutes when run-
ning the One-Round
algorithm

0 10 20 30 40
0

5

10

15

20

25

30

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.125.: Lost packets in our ping
test when executing a
route change with the
One-Round algorithm

91

A. Appendix: Results

0 10 20 30 40

1400

1500

1600

1700

1800

1900

2000

2100
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.126.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
One-Round algorithm

Leaving no time between rounds

Complete-Time Init-Time Round-1

200

300

400

500

600

700

800

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.127.: Time that it takes to ap-
ply the changes using a
schedule generated by
One-Round

0 5 10
47

47.5

48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50

60

Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.128.: Bandwidth and retries
during the execution of
the One-Round algorithm

0 10 20 30 40

9

9.5

10

10.5

11
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

92

A. Appendix: Results

Figure A.129.: Latency between source
and destination of all
flows during a route
change with the One-
Round algorithm

0 5 10

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.130.: Links disappearing and
newly appearing in
traceroutes when run-
ning the One-Round
algorithm

0 5 10 15
0

5

10

15

20

25

30

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.131.: Lost packets in our ping
test when executing a
route change with the
One-Round algorithm

0 2 4 6 8 10 12 14
1300

1400

1500

1600

1700

1800

1900

2000
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.132.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
One-Round algorithm

93

A. Appendix: Results

Three-Round

Leaving 5 seconds between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3

0

2k

4k

6k

8k

10k

12k

14k

16k

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.133.: Time that it takes to
apply the changes using
a schedule generated by
Three-Round

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50

60

70

80 Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.134.: Bandwidth and retries
during the execution
of the Three-Round
algorithm

0 10 20 30 40

9.5

10

10.5

11

11.5

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure A.135.: Latency between source
and destination of all
flows during a route
change with the Three-
Round algorithm

0 10 20 30 40

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.136.: Links disappearing and
newly appearing in
traceroutes when run-
ning the Three-Round
algorithm

0 10 20 30 40
0

2

4

6

8

10

12

14

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.137.: Lost packets in our ping
test when executing a
route change with the
Three-Round algorithm

94

A. Appendix: Results

0 10 20 30 40

1400

1500

1600

1700

1800

1900

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.138.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
Three-Round algorithm

Leaving no time between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3
0

200

400

600

800

1000

1200

1400

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.139.: Time that it takes to ap-
ply the changes using a
schedule generated by
Three-Round

0 5 10
47

47.5

48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50

60
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.140.: Bandwidth and retries
during the execution
of the Three-Round
algorithm

0 10 20 30 40

9.5

10

10.5

11

11.5

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

95

A. Appendix: Results

Figure A.141.: Latency between source
and destination of all
flows during a route
change with the Three-
Round algorithm

0 5 10

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.142.: Links disappearing and
newly appearing in
traceroutes when run-
ning the Three-Round
algorithm

0 5 10 15
0

2

4

6

8

10

12

14

16
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.143.: Lost packets in our ping
test when executing a
route change with the
Three-Round algorithm

0 2 4 6 8 10 12 14

1400

1600

1800

2000

2200

2400

2600

2800
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.144.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
Three-Round algorithm

96

A. Appendix: Results

Results from chapter 7.3

Backward

Leaving 5 seconds between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3 Round-4 Round-5

0

5k

10k

15k

20k

25k

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.145.: Time that it takes to
apply the changes using
a schedule generated by
Backward

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

0.5

1

1.5

2

2.5

3

3.5

4
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.146.: Bandwidth and retries
during the execution of
the Backward algorithm

0 10 20 30 40
10.6

10.7

10.8

10.9

11

11.1

11.2

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure A.147.: Latency between source
and destination of all
flows during a route
change with the Back-
ward algorithm

0 10 20 30 40

−10

−5

0

5

10

15

20

25

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.148.: Links disappearing
and newly appearing
in traceroutes when
running the Backward
algorithm

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

97

A. Appendix: Results

Figure A.149.: Lost packets in our ping
test when executing a
route change with the
Backward algorithm

0 10 20 30 40

900

1000

1100

1200

1300

1400

1500

1600

1700 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.150.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
Backward algorithm

Leaving no time between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3 Round-4 Round-5
0

200

400

600

800

1000

1200

1400

1600

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.151.: Time that it takes to ap-
ply the changes using a
schedule generated by
Backward

0 5 10
47

47.5

48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5

6
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.152.: Bandwidth and retries
during the execution of
the Backward algorithm

0 10 20 30 40
10.6

10.7

10.8

10.9

11

11.1

11.2

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

98

A. Appendix: Results

Figure A.153.: Latency between source
and destination of all
flows during a route
change with the Back-
ward algorithm

0 5 10

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.154.: Links disappearing
and newly appearing
in traceroutes when
running the Backward
algorithm

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.155.: Lost packets in our ping
test when executing a
route change with the
Backward algorithm

0 2 4 6 8 10 12 14

1350

1400

1450

1500

1550

1600

1650

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.156.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
Backward algorithm

99

A. Appendix: Results

Brute-force

Leaving 5 seconds between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3 Round-4

0

5k

10k

15k

20k

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.157.: Time that it takes to apply
the changesusing a sched-
ule generated by Brute-
force

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5

6

7
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.158.: Bandwidth and retries
during the execution of
the Brute-force algorithm

0 10 20 30 40

10.2

10.3

10.4

10.5

10.6

10.7

10.8
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure A.159.: Latency between source
and destination of all
flows during a route
change with the Brute-
force algorithm

0 10 20 30 40
−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.160.: Links disappearing and
newly appearing in
traceroutes when run-
ning the Brute-force
algorithm

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.161.: Lost packets in our ping
test when executing a
route change with the
Brute-force algorithm

100

A. Appendix: Results

0 10 20 30 40

900

1000

1100

1200

1300

1400

1500

1600

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.162.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
Brute-force algorithm

Leaving no time between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3 Round-4
0

200

400

600

800

1000

1200

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.163.: Time that it takes to
apply the changes using
a schedule generated by
Brute-force

0 5 10
47

47.5

48

48.5

49

49.5

50

50.5

51

0

2

4

6

8

10

12
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.164.: Bandwidth and retries
during the execution of
the Brute-force algorithm

0 10 20 30 40

10.2

10.3

10.4

10.5

10.6

10.7

10.8
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

101

A. Appendix: Results

Figure A.165.: Latency between source
and destination of all
flows during a route
change with the Brute-
force algorithm

0 5 10
−30

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.166.: Links disappearing and
newly appearing in
traceroutes when run-
ning the Brute-force
algorithm

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.167.: Lost packets in our ping
test when executing a
route change with the
Brute-force algorithm

0 2 4 6 8 10 12 14

1350

1400

1450

1500

1550

1600

1650

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.168.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
Brute-force algorithm

102

A. Appendix: Results

Chronicle

Leaving 5 seconds between rounds

Complete-Time Init-Time Round-1
0

1000

2000

3000

4000

5000

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.169.: Time that it takes to ap-
ply the changes using a
schedule generated by
Chronicle

0 10 20 30 40
47

47.5

48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50

60 Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.170.: Bandwidth and retries
during the execution of
the Chronicle algorithm

0 10 20 30 40

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure A.171.: Latency between source
and destination of all
flows during a route
change with the Chroni-
cle algorithm

0 10 20 30 40

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.172.: Links disappearing
and newly appearing
in traceroutes when
running the Chronicle
algorithm

0 10 20 30 40
0

2

4

6

8

10

12

14

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.173.: Lost packets in our ping
test when executing a
route change with the
Chronicle algorithm

103

A. Appendix: Results

0 10 20 30 40
1300

1350

1400

1450

1500

1550

1600

1650
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.174.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
Chronicle algorithm

Leaving no time between rounds

Complete-Time Init-Time Round-1

200

300

400

500

600

700

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.175.: Time that it takes to ap-
ply the changes using a
schedule generated by
Chronicle

0 5 10
48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50

60
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.176.: Bandwidth and retries
during the execution of
the Chronicle algorithm

0 10 20 30 40

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

104

A. Appendix: Results

Figure A.177.: Latency between source
and destination of all
flows during a route
change with the Chroni-
cle algorithm

0 5 10

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.178.: Links disappearing
and newly appearing
in traceroutes when
running the Chronicle
algorithm

0 5 10 15
0

2

4

6

8

10

12

14

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.179.: Lost packets in our ping
test when executing a
route change with the
Chronicle algorithm

0 2 4 6 8 10 12 14
1300

1350

1400

1450

1500

1550

1600

1650

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.180.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
Chronicle algorithm

105

A. Appendix: Results

Greedy

Leaving 5 seconds between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3 Round-4

0

5k

10k

15k

20k

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.181.: Time that it takes to ap-
ply the changes using a
schedule generated by
Greedy

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

1

2

3

4

5

6

7
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.182.: Bandwidth and retries
during the execution of
the Greedy algorithm

0 10 20 30 40

9.6

9.7

9.8

9.9

10

10.1

10.2 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure A.183.: Latency between source
and destination of all
flows during a route
change with the Greedy
algorithm

0 10 20 30 40
−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.184.: Links disappearing
and newly appearing
in traceroutes when
running the Greedy
algorithm

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.185.: Lost packets in our ping
test when executing a
route change with the
Greedy algorithm

106

A. Appendix: Results

0 10 20 30 40

900

1000

1100

1200

1300

1400

1500

1600

1700 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.186.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
Greedy algorithm

Leaving no time between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3 Round-4
0

200

400

600

800

1000

1200

1400

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.187.: Time that it takes to apply
the changes using a sched-
ule generated by Greedy

0 5 10
47

47.5

48

48.5

49

49.5

50

50.5

51

0

2

4

6

8

10
Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.188.: Bandwidth and retries
during the execution of
the Greedy algorithm

0 10 20 30 40

9.6

9.7

9.8

9.9

10

10.1

10.2 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

107

A. Appendix: Results

Figure A.189.: Latency between source
and destination of all
flows during a route
change with the Greedy
algorithm

0 5 10
−30

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.190.: Links disappearing
and newly appearing
in traceroutes when
running the Greedy
algorithm

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.191.: Lost packets in our ping
test when executing a
route change with the
Greedy algorithm

0 2 4 6 8 10 12 14

1350

1400

1450

1500

1550

1600

1650 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.192.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
Greedy algorithm

108

A. Appendix: Results

One-Round

Leaving 5 seconds between rounds

Complete-Time Init-Time Round-1
0

1000

2000

3000

4000

5000

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.193.: Time that it takes to
apply the changes using
a schedule generated by
One-Round

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50

Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.194.: Bandwidth and retries
during the execution of
the One-Round algorithm

0 10 20 30 40

11.4

11.6

11.8

12

12.2

12.4

12.6 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure A.195.: Latency between source
and destination of all
flows during a route
change with the One-
Round algorithm

0 10 20 30 40

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.196.: Links disappearing and
newly appearing in
traceroutes when run-
ning the One-Round
algorithm

0 10 20 30 40
0

2

4

6

8

10

12

14

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.197.: Lost packets in our ping
test when executing a
route change with the
One-Round algorithm

109

A. Appendix: Results

0 10 20 30 40
1300

1350

1400

1450

1500

1550

1600

1650

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.198.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
One-Round algorithm

Leaving no time between rounds

Complete-Time Init-Time Round-1

200

400

600

800

1000

1200

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.199.: Time that it takes to
apply the changes using
a schedule generated by
One-Round

0 5 10
47

47.5

48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50

60 Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.200.: Bandwidth and retries
during the execution of
the One-Round algorithm

0 10 20 30 40

11.4

11.6

11.8

12

12.2

12.4

12.6 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

110

A. Appendix: Results

Figure A.201.: Latency between source
and destination of all
flows during a route
change with the One-
Round algorithm

0 5 10

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.202.: Links disappearing and
newly appearing in
traceroutes when run-
ning the One-Round
algorithm

0 5 10 15
0

2

4

6

8

10

12

14

16
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.203.: Lost packets in our ping
test when executing a
route change with the
One-Round algorithm

0 2 4 6 8 10 12 14

1350

1400

1450

1500

1550

1600

1650

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.204.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
One-Round algorithm

111

A. Appendix: Results

Three-Round

Leaving 5 seconds between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3

0

2k

4k

6k

8k

10k

12k

14k

16k

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.205.: Time that it takes to
apply the changes using
a schedule generated by
Three-Round

0 10 20 30 40
48

48.5

49

49.5

50

50.5

51

0

20

40

60

80

Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.206.: Bandwidth and retries
during the execution
of the Three-Round
algorithm

0 10 20 30 40

12

12.5

13

13.5
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure A.207.: Latency between source
and destination of all
flows during a route
change with the Three-
Round algorithm

0 10 20 30 40

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.208.: Links disappearing and
newly appearing in
traceroutes when run-
ning the Three-Round
algorithm

0 10 20 30 40
0

1

2

3

4

5

6

7

8 Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.209.: Lost packets in our ping
test when executing a
route change with the
Three-Round algorithm

112

A. Appendix: Results

0 10 20 30 40

1350

1400

1450

1500

1550

1600

1650

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.210.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
Three-Round algorithm

Leaving no time between rounds

Complete-Time Init-Time Round-1 Round-2 Round-3
0

200

400

600

800

1000

1200

1400

1600

Type of measurement

A
pp

ly
 ti

m
e

(m
s)

Figure A.211.: Time that it takes to ap-
ply the changes using a
schedule generated by
Three-Round

0 5 10
47

47.5

48

48.5

49

49.5

50

50.5

51

0

10

20

30

40

50

60 Bandwidth flow 1

Bandwidth flow 2

Bandwidth flow 3

Bandwidth flow 4

Retries flow 1

Retries flow 2

Retries flow 3

Retries flow 4

Seconds since start

B
an

dw
id

th
 (M

bi
t/s

)

R
et

rie
s

Figure A.212.: Bandwidth and retries
during the execution
of the Three-Round
algorithm

0 10 20 30 40

12

12.5

13

13.5
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 la
te

nc
y

(m
s)

113

A. Appendix: Results

Figure A.213.: Latency between source
and destination of all
flows during a route
change with the Three-
Round algorithm

0 5 10

−20

−10

0

10

20

30
Flow 1 links added
Flow 1 links removed
Flow 2 links added
Flow 2 links removed
Flow 3 links added
Flow 3 links removed
Flow 4 links added
Flow 4 links removed

Seconds after start

A
ve

ra
ge

 li
nk

 c
ha

ng
es

Figure A.214.: Links disappearing and
newly appearing in
traceroutes when run-
ning the Three-Round
algorithm

0 5 10 15
0

1

2

3

4

5

6

7
Flow

1
2
3
4

Seconds after start

A
ve

ra
ge

 lo
st

 p
ac

ke
ts

Figure A.215.: Lost packets in our ping
test when executing a
route change with the
Three-Round algorithm

114

A. Appendix: Results

0 2 4 6 8 10 12 14

1350

1400

1450

1500

1550

1600

1650

Flow
1
2
3
4

Seconds after start

A
ve

ra
ge

 R
TT

 (u
s)

Figure A.216.: Round-Trip-Time be-
tween source and desti-
nation of all flows during
the route changes of the
Three-Round algorithm

115

	Introduction
	Motivation
	Main Results
	Structure

	Background
	Software Defined Networks
	Time-Based Software Defined Networks
	Route Updates
	2-Phase-Commit protocols
	Loop-Free Round-Based algorithms
	Time-Based Updates

	Flow swapping
	Ansible
	MikroTik RouterOS

	Algorithms
	Greedy
	Backward
	Brute-Force
	Chronicle
	One-Round

	Research Questions
	Three-Round
	Experiment Setup
	Network-Setup
	Hardware
	Software
	Ansible-Setup-Playbook
	Route-Change-Calculator
	Route-Applier
	Test-Controller

	Problems
	Routers Not Routing
	Packet loss during route updating
	iPerf3 not measuring latency

	Reproducibility, Configurability and Adaptability

	Experiment Results
	Taking the short way
	Results from Algorithms
	Comparison of Algorithms
	Performance Comparison
	Comparison of Calculation Time
	Discussion Of Route Change 1

	Looping around
	Results from Algorithms
	Comparison of Algorithms
	Performance Comparison
	Comparison of Calculation Time
	Discussion Of Route Change 2

	Going backward
	Result from Algorithms
	Comparison of Algorithms
	Performance Comparison
	Comparison of Calculation Time
	Discussion Of Route Change 3

	Discussion
	Conclusion
	Results
	Future Work

	Bibliography
	Appendix: Results

